Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "głębokie uczenie" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Model Faster R-CNN uczony na syntetycznych obrazach
Faster R-CNN model learning on synthetic images
Autorzy:
Łach, Błażej
Łukasik, Edyta
Powiązania:
https://bibliotekanauki.pl/articles/1427643.pdf
Data publikacji:
2020
Wydawca:
Politechnika Lubelska. Instytut Informatyki
Tematy:
computer vision
sztuczne obrazy
Faster R-CNN
głębokie uczenie
synthetic images
deep learning
Opis:
Uczenie maszynowe wymaga opisu danych przez człowieka. Opisywanie zbioru danych ręcznie jest bardzo czasochłonne. W artykule zbadano jak model uczył się na zdjęciach sztucznie wytworzonych, z jak najmniejszym udziałem człowieka przy opisywaniu danych. Sprawdzono jaki wpływ miało zastosowanie augmentacji i progresywnego rozmiaru zdjęcia przy treningu modelu na syntetycznym zbiorze. Model osiągnął nawet o 3,35% wyższą średnią precyzję na syntetycznym zbiorze danych przy zastosowaniu treningów z rosnącą rozdzielczością. Augmentacje poprawiły jakość detekcji na rzeczywistych zdjęciach. Wytwarzanie sztucznie danych treningowych ma duży wpływ na przyśpieszenie przygotowania treningów, ponieważ nie wymaga tak dużych nakładów ludzkich, jak klasyczne uczenie modeli z danymi opisanymi przez człowieka.
Machine learning requires a human description of the data. The manual dataset description is very time consuming. In this article was examined how the model learns from artificially created images, with the least human participation in describing the data. It was checked how the model learned on artificially produced images with augmentations and progressive image size. The model has achieve up to 3.35 higher mean average precision on syntetic dataset in the training with increasing images resolution. Augmentations improved the quality of detection on real photos. The production of artificially generated training data has a great impact on the acceleration of prepare training, because it does not require as much human resources as normal learning process.
Źródło:
Journal of Computer Sciences Institute; 2020, 17; 401-404
2544-0764
Pojawia się w:
Journal of Computer Sciences Institute
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A comparison of conventional and deep learning methods of image classification
Porównanie metod klasycznego i głębokiego uczenia maszynowego w klasyfikacji obrazów
Autorzy:
Dovbnych, Maryna
Plechawska-Wójcik, Małgorzata
Powiązania:
https://bibliotekanauki.pl/articles/2055127.pdf
Data publikacji:
2021
Wydawca:
Politechnika Lubelska. Instytut Informatyki
Tematy:
image classification
machine learning
deep learning
neural networks
klasyfikacja obrazów
uczenie maszynowe
uczenie głębokie
sieci neuronowe
Opis:
The aim of the research is to compare traditional and deep learning methods in image classification tasks. The conducted research experiment covers the analysis of five different models of neural networks: two models of multi–layer perceptron architecture: MLP with two hidden layers, MLP with three hidden layers; and three models of convolutional architecture: the three VGG blocks model, AlexNet and GoogLeNet. The models were tested on two different datasets: CIFAR–10 and MNIST and have been applied to the task of image classification. They were tested for classification performance, training speed, and the effect of the complexity of the dataset on the training outcome.
Celem badań jest porównanie metod klasycznego i głębokiego uczenia w zadaniach klasyfikacji obrazów. Przeprowa-dzony eksperyment badawczy obejmuje analizę pięciu różnych modeli sieci neuronowych: dwóch modeli wielowar-stwowej architektury perceptronowej: MLP z dwiema warstwami ukrytymi, MLP z trzema warstwami ukrytymi; oraz trzy modele architektury konwolucyjnej: model z trzema VGG blokami, AlexNet i GoogLeNet. Modele przetrenowano na dwóch różnych zbiorach danych: CIFAR–10 i MNIST i zastosowano w zadaniu klasyfikacji obrazów. Zostały one zbadane pod kątem wydajności klasyfikacji, szybkości trenowania i wpływu złożoności zbioru danych na wynik trenowania.
Źródło:
Journal of Computer Sciences Institute; 2021, 21; 303--308
2544-0764
Pojawia się w:
Journal of Computer Sciences Institute
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies