Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "klasyfikacja obiektów" wg kryterium: Wszystkie pola


Wyświetlanie 1-1 z 1
Tytuł:
Klasyfikacja obiektów na podstawie ich zdjęć rentgenowskich
Object classification using X-ray images
Autorzy:
Nowosad, Piotr
Charytanowicz, Małgorzata
Powiązania:
https://bibliotekanauki.pl/articles/98446.pdf
Data publikacji:
2020
Wydawca:
Politechnika Lubelska. Instytut Informatyki
Tematy:
object classification
geometric features
image processing
X-ray imaging
klasyfikacja obiektów
cechy geometryczne
przetwarzanie obrazów
obrazowanie rentgenowskie
Opis:
The main aim of the presented research was to assess the possibility of utilizing geometric features in object classifica-tion. Studies were conducted using X-ray images of kernels belonging to three different wheat varieties: Kama, Canadi-an and Rosa. As a part of the work, image processing methods were used to determine the main geometric grain parameters, including the kernel area, kernel perimeter, kernel length and kernel width. The results indicate significant differences between wheat varieties, and demonstrates the importance of their size and shape parameters in the classification process. The percentage of correctness of classification was about 92% when the k-Means algorithm was used. A classification rate of 93% was obtain using the K-Nearest Neighbour and Support Vector Machines. Herein, the Rosa variety was better recognized, whilst the Canadian and Kama varieties were less successfully differentiated.
Głównym celem artykułu było zbadanie możliwości wykorzystania cech geometrycznych obiektów w procesie ich klasyfikacji. Materiał badawczy stanowiły zdjęcia rentgenowskie ziaren trzech odmian pszenicy: kama, kanadyjskiej i rosa. W ramach pracy opracowano metody pozwalające na wyznaczenie cech geometrycznych obiektów znajdujących się na obrazach cyfrowych, takich jak długość, szerokość, średnica, pole i obwód. Otrzymane wyniki wykazały istotne różnice pomiędzy parametrami charakteryzującymi kształt i wielkości poszczególnych odmian pszenicy i możliwość ich zastosowania w procesie klasyfikacji. Procent poprawnie zaklasyfikowanych ziaren za pomocą algorytmu k-średnich wynosił 92%. Nieco lepsze wyniki, rzędu 93%, uzyskano za pomocą metod K-najbliższych sąsiadów i wek-torów wspierających. Najlepiej rozróżnialną odmianą okazała się rosa w porównaniu do odmian kanadyjskiej i kama.
Źródło:
Journal of Computer Sciences Institute; 2020, 15; 206-213
2544-0764
Pojawia się w:
Journal of Computer Sciences Institute
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies