Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "heat plant" wg kryterium: Wszystkie pola


Wyświetlanie 1-4 z 4
Tytuł:
Domestic combined micro heat and power plant
Domowe mikrosiłownie kogeneracyjne
Autorzy:
Mikielewicz, J.
Powiązania:
https://bibliotekanauki.pl/articles/1819829.pdf
Data publikacji:
2009
Wydawca:
Politechnika Koszalińska. Wydawnictwo Uczelniane
Tematy:
mikrosiłownie
kogeneracja
energetyka
micro heat
combined
energy sector
Opis:
Nowadays the main direction of developments in energy sector is production of electricity in big power plants. The bigger capacity of the plant the lower is cost of the unit of electricity. This direction of development reaches many barriers. So, in energy conversion field a new direction is established called dispersed cogeneration of heat and power in small power plants. In paper the micro combined heat and power unit (CHP) is presented. Produced heat by CHP can be used for preparation of hot water for domestic use, swimming pools, heating purposes or production of ice water. The source of prime energy in the micro CHP can be gas from combustion of natural resources or biomass, geothermal resource or the solar collectors. Also the waste heat from technological processes can be used for that purpose. Electricity is produced by the generator driven by the micro turbine operating on vapor of low-boiling point liquid. The power of such turbine ranges from several to tens of kilowatts. The advantage of the micro CHP is its compactness and small dimensions as well possibility for full automation of the operation of such plant. Small dimensions of the CHP are obtained through implementation of modern materials and up to date micro- or even nanotechnologies. Small dimensions of turbine and heat exchangers, simple materials and simple fabrications of parts of the plants, working in low temperatures range, lead to low costs of electricity production.
Jednym z nowych obiecujących kierunków współczesnej energetyki uzupełniającym scentralizowany sektor energetyki jest sektor energetyki rozproszonej, w którym wytwarzana jest energia elektryczna w kogeneracji z ciepłem. Istnieje szereg technologii energetyki rozproszonej o małej mocy wytwarzania energii elektrycznej i ciepła. Najkrótszy horyzont czasowy związany jest z zastosowanie parowych obiegów Rankine'a na czynnik niskowrzący (Organic Rankine Cycle-ORC) w mikrosiłowni. Na tej bazie powstała w Instytucie Maszyn Przepływowych PAN koncepcja Domowej Mikrosiłowni Kogeneracyjnej. Mikrosiłownia ta o obiegu ORC ma ona służyć do produkcji energii elektrycznej i ciepła do użytku domowego. W przyszłości Mikrosiłownia Kogeneracyjna zastąpi konwencjonalne kotły do ogrzewania obiektów takich jak: domki jednorodzinne, domy wielorodzinne, osiedla itp. Gabarytowo kocioł z Mikrosiłownią będzie niewiele różnić się od dotychczasowego kotła grzewczego ale będzie oprócz funkcji ogrzewania wytwarzać dodatkowo energię elektryczną. Mikrosiłownia parowa na czynnik niskowrzący pracująca w zakresie znacznie niższych temperatur niż silnik spalinowy i turbina gazowa wymaga mniej cennych materiałów, łatwiejsza też jest technologia jej wytworzenia. Przy jej pomocy staje się możliwe generowanie energii elektrycznej przy cenach zbliżonych do cen energii wytwarzanej w tradycyjnych siłowniach dużej mocy. Lepsze wykorzystanie energii paliwa w Mikrosiłowniach Kogeneracyjnych prowadzi do obniżenia szkodliwych emisji towarzyszących procesowi spalania paliwa. Mała siłownia kogeneracyjna może być w pełni zautomatyzowana i nie wymagać obsługi Podstawowymi elementami składowymi mikrosiłowni są: kocioł (parownik), turbina parowa, skraplacz (kondensator), generator elektryczny i pompa zasilająca. Nowa koncepcja mikrosiłowni wymaga rozwiązania szeregu nowych problemów. Jednym z nich jest wybór odpowiedniego czynnika roboczego aby zastosować kompaktne wymienniki ciepła o intensywnej wymianie ciepła w mikrokanałach, analiza obiegu uwzględnia spadki ciśnienia w wymiennikach, które z kolei wpływają na różnice temperatur w wymiennikach a tym samym i na wymiary tych wymienników ciepła. Należało więc w obliczeniach koncepcyjnych uwzględnić spadek ciśnienia przy przepływie dwufazowym przez parownik i skraplacz. Wymianę ciepła podczas wrzenia w parowniku wyznaczono z własnego modelu przepływu dwufazowego. Oprócz prac teoretycznych prowadzone są w Instytucie prace eksperymentalne. Zbudowano stanowisko eksperymentalne symulujące pracę mikrosiłowni, na którym przeprowadzono wstępne pomiary parametrów obiegu, współczynników wymiany ciepła w wymiennikach metodą Wilsona oraz sprawności ekspandera spiralnego. Otrzymane wyniki są zachęcające. W dalszych badaniach eksperymentalnych ekspander (odwrócona chłodnicza sprężarka spiralna) będzie zastąpiony mikroturbiną własnej konstrukcji.
Źródło:
Rocznik Ochrona Środowiska; 2009, Tom 11; 25-38
1506-218X
Pojawia się w:
Rocznik Ochrona Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Znaczenie odzysku ciepła odpadowego z instalacji produkującej dimetyloeter w ochronie środowiska
Importance of Waste Heat Recovery from Dimethyl Ether Production Plant in Environment Protection
Autorzy:
Wodołażski, A.
Powiązania:
https://bibliotekanauki.pl/articles/1818567.pdf
Data publikacji:
2015
Wydawca:
Politechnika Koszalińska. Wydawnictwo Uczelniane
Tematy:
rekuperacja ciepła
synteza DME
modelowanie
Self-Heat Recuperation
DME synthesis
modelling
Opis:
The paper presents a computational simulation energy recovery of methanol dehydration to dimethyl ether (DME) in industrial process plant. Heat recovery technology from the viewpoint of energy saving in the environmental protection for the two key nodes in the system: reactor and distillation column was examined. Limited energy helps reduce emissions associated with the combustion of fuels into the atmosphere. Currently operating technological installations should be characterized by energy- and material savings, where significantly reducing the impact of harmful emissions into the environment. These simulations are a valuable tool to support the design of installation to preliminary estimate benefits of circuit materials and energy which introduces a significant innovation in the environmental protection.
Źródło:
Rocznik Ochrona Środowiska; 2015, Tom 17, cz. 2; 1674-1683
1506-218X
Pojawia się w:
Rocznik Ochrona Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Evaporator for ORC cycle with recirculating heat carring water – computational model
Autorzy:
Kujawa, T.
Nowak, W.
Powiązania:
https://bibliotekanauki.pl/articles/95370.pdf
Data publikacji:
2018
Wydawca:
Politechnika Koszalińska. Wydawnictwo Uczelniane
Tematy:
evaporator
recirculation
average specific heat
ORC power plant
mathematical modeling
parownik
recyrkulacja
ciepło właściwe
siłownia ORC
modelowanie matematyczne
Opis:
The following paper presents an ORC installation including an evaporator with recirculation (heat carrying water exiting the evaporator is redirected to its inlet). It covers the calculations of inlet/outlet temperature of the evaporator taking into account a variant recirculation coefficient. Formulas for heat transfer between heat carrying water and working fluid inside evaporator are also included in this paper. The calculations are based on properly defined average specific heat. The analysis shows that the system performance depends on heat carrying water inlet temperature, on heat carrying water flow rate and the recirculation coefficient.
Źródło:
Journal of Mechanical and Energy Engineering; 2018, 2, 4; 301-310
2544-0780
2544-1671
Pojawia się w:
Journal of Mechanical and Energy Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Assessment of the Possibility of Introducing a Cogeneration System in the Biogas Development Process by the Example of the Wastewater Treatment Plant Located in Rybnik Orzepowice
Ocena możliwości wprowadzenia układu kogeneracji w procesie zagospodarowania biogazu na przykładzie oczyszczalni ścieków w Rybniku Orzepowicach
Autorzy:
Karwot, Janusz
Bondaruk, Jan
Zawartka, Paweł
Powiązania:
https://bibliotekanauki.pl/articles/1811646.pdf
Data publikacji:
2020
Wydawca:
Politechnika Koszalińska. Wydawnictwo Uczelniane
Tematy:
biogas
cogeneration
heat
electricity
COD load
BZT5 load
biogaz
kogeneracja
ciepło
energia elektryczna
ładunek ChZT
ładunek BZT5
Opis:
The paper presents and discusses the 6-year effects of the operation of a biogas-fired cogeneration system which operates at the Rybnik Orzepowice sewage treatment plant. The qualitative composition of biogas, average daily amount of biogas produced, total demand of the sewage treatment plant for electricity and the amount of electricity obtained from biogas were presented. Regarding the average daily biogas production for the years 2013–2018, it can be stated that it remains at the level of 2,809 m3/d (±33%). The average daily total electricity consumption for 2013-2018 remains at 8,846 kWh/d (-13.8%; +20.6%). The average daily amount of electricity produced from biogas for the years 2013-2018 remains at the level of 3,892 kWh/d (-38.7%; +10.1%). Electricity generated from biogas allows us to cover the demand of the treatment plant at 44% (minimum 39%, maximum 50%). In the analysed period, biogas consumption by individual facilities was: cogeneration unit approx. 65%, boilers: 10%, flare: 25%. Based on the operational data, it was calculated that: the unit indicator for biogas extraction from sewage, on average is 0,1584 mn3/m3 (min. 0,0937 mn3/m3, max.: 0,2291 mn3/m3), the unit indicator for biogas extraction in relation to for COD load an average of 0.22 m3of biogas/kg COD (min. 0.09 m3of biogas/kg COD, max. 0.47 m3of biogas/kg COD), the unit ratio of biogas extraction in relation to the BZT5 load was on average 0.61 m3biogas/kg BZT5 (min. 0.28 m3biogas/kg BZT5, max. 1.20 m3biogas/kg BZT5).
W artykule przedstawiono i omówiono 6-cio letnie efekty pracy układu kogeneracyjnego zasilanego biogazem, który pracuje w Oczyszczalni Ścieków Rybnik Orzepowice. Zaprezentowano skład jakościowy biogazu, średniodobową ilość wytwarzanego biogazu, całkowite zapotrzebowanie oczyszczalni na energię elektryczną oraz ilość energii elektrycznej uzyskiwanej z biogazu. Średniodobowa produkcji biogazu, za lata 2013-2018 można stwierdzić, że utrzymuje się ona na poziomie 2,809 m3/d (±33%). Średniodobowe całkowite zużycie energii elektrycznej za lata 2013–2018, utrzymuje się on poziomie 8,846 kWh/d (-13,8%; +20,6%). Średniodobowa ilość produkowanej energii, energii elektrycznej z biogazu za lata 2013–2018 utrzymuje się on poziomie 3,892 kWh/d (-38,7%; +10,1%). Energia elektryczna wytwarzana z biogazu pozwala na pokrycie zapotrzebowania oczyszczalni na poziomie 44% (minimalnie 39%, maksymalnie 50%). W analizowanym okresie zużycie biogazu przez poszczególne obiekty wynosiło: jednostka kogeneracyjna ok. 65%, kotły: 10%, pochodnia: 25%. Na podstawie danych eksploatacyjnych obliczono, że: jednostkowy wskaźnik pozyskania biogazu ze ścieków, średnio wynosi 0,1584 mn3/m3 (min. 0,0937 mn3/m3, max.: 0,2291 mn3/m3), jednostkowy wskaźnik pozyskania biogazu w odniesieniu do ładunku ChZT średnio wynosił 0,22 m3 biogazu/kg ChZT (min. 0,09 m3 biogazu/kg ChZT, max. 0,47 m3 biogazu/kg ChZT), jednostkowy wskaźnik pozyskania biogazu w odniesieniu do ładunku BZT5 średnio wynosił 0,61 m3 biogazu/kg BZT5 (min. 0,28 m3 biogazu/kg BZT5 w, max. 1,20 m3 biogazu/kg BZT5).
Źródło:
Rocznik Ochrona Środowiska; 2020, Tom 22, cz. 2; 1116-1131
1506-218X
Pojawia się w:
Rocznik Ochrona Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies