Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Sztuczne Sieci Neuronowe" wg kryterium: Temat


Wyświetlanie 1-10 z 10
Tytuł:
Implementacja sztucznych sieci neuronowych w środowisku LabVIEW
Artificial neural networks in LabVIEW
Autorzy:
Rafiński, L.
Powiązania:
https://bibliotekanauki.pl/articles/268930.pdf
Data publikacji:
2008
Wydawca:
Politechnika Gdańska. Wydział Elektrotechniki i Automatyki
Tematy:
sztuczne sieci neuronowe
artificial neural networks
Opis:
Przedstawiono możliwości oraz strukturę zrealizowanego przez autora modułu do implementacji sztucznych sieci neuronowych w środowisku LabVIEW.
The article shows the structure and capabilities of a LabVIEW module for the artficial neural networks implementation designed by the author.
Źródło:
Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej; 2008, 25; 141-143
1425-5766
2353-1290
Pojawia się w:
Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zastosowanie algorytmów sztucznych sieci neuronowych do prognozowania zużycia energii elektrycznej
Application artificial neural networks for electricity prediction
Autorzy:
Włas, M.
Powiązania:
https://bibliotekanauki.pl/articles/266363.pdf
Data publikacji:
2016
Wydawca:
Politechnika Gdańska. Wydział Elektrotechniki i Automatyki
Tematy:
prognozowanie zużycia energii
sztuczne sieci neuronowe
forecasting energy consumption
artificial neural network
Opis:
W artykule przestawiono algorytm przewidywania zużycia energii elektrycznej budynków mieszkalnych z wykorzystaniem informacji o produkcji i warunkach atmosferycznych. W artykule została zaproponowana własna metoda predykcji z wykorzystaniem wielowarstwowej jednokierunkowej sztucznej sieci neuronowej. W pracy zostały przedstawione podstawowe pojęcia z zakresu sieci neuronowych oraz testy działania programu prognozującego na podstawie rzeczywistych danych pomiarowych. Głównym zadaniem badawczym było sprawdzenie dokładności algorytmu predykcji do prognozowania zużycia energii elektrycznej. Ma to na celu uzyskanie programu, którego wyniki o charakterze ilościowym będą wykorzystywane do prognozowania potrzeb zakupowych na TGE (Towarowej Giełdzie Energii) przy udziale metody zakupu energii elektrycznej na Rynku Dnia Następnego.
This paper presents a flexible approach to forecasting of energy consumption in residential buildings, using time series analysis and neural networks. Our goal is to develop a one day-ahead forecasting model based on an artificial neural network using information about temperature of air. The article has been proposed neural network prediction method using a multilayered feed-forward artificial neural network with the backpropagation training algorithm. Experimental results have showed that the proposed neural network can faithfully reproduce the curve of daily energy consumption with a percentage error less than 3.74%.
Źródło:
Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej; 2016, 51; 217-220
1425-5766
2353-1290
Pojawia się w:
Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zastosowanie sztucznych sieci neuronowych do prognozowania cen na giełdzie energii
Using artificial neural networks to forecasting the energy exchange price
Autorzy:
Miller, A.
Bućko, P.
Powiązania:
https://bibliotekanauki.pl/articles/268589.pdf
Data publikacji:
2014
Wydawca:
Politechnika Gdańska. Wydział Elektrotechniki i Automatyki
Tematy:
prognoza
sztuczne sieci neuronowe
rynek energii
MATLAB
prediction methods
artificial neural networks
energy market
Opis:
Jednym z aktualnych zagadnień gospodarczych jest prognozowanie cen na Giełdzie Energii. Autorzy publikacji proponują wykorzystanie do tego celu sztucznych sieci neuronowych i oprogramowania MATLAB. Opisują narzędzie do prognozy krótkoterminowej Rynku Dnia Następnego. W artykule przedstawiono sposób kalibracji danych. Opisano również użyte funkcje aktywacji w warstwach neuronowych wraz z konsekwencjami z nich wynikającymi dla samego procesu nauczania. W końcowej części artykułu porównano prognozę sieci neuronowej z rzeczywistym przebiegiem notowań na Giełdzie Energii.
One of the current economic problem is the Energy Exchange price forecasting. Authors’ proposal is to implement artificial neural network and MATLAB package for price forecasting. Program for short-time forecast of the Next Day Market price is described. Data normalisation methods are presented in the paper. Neural activation functions are described and the consequences of choosing activation function on neural network learning process are discussed. In the conclusion, comparison of Energy Exchange forecast price and real prices is presented.
Źródło:
Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej; 2014, 40; 69-72
1425-5766
2353-1290
Pojawia się w:
Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Budowa modelu prognostycznego farmy wiatrowej w środowisku MATLAB
Construction of wind farms forecasting model in MATLAB
Autorzy:
Rubanowicz, T.
Powiązania:
https://bibliotekanauki.pl/articles/268666.pdf
Data publikacji:
2012
Wydawca:
Politechnika Gdańska. Wydział Elektrotechniki i Automatyki
Tematy:
elektrownie wiatrowe
prognozowanie mocy
sztuczne sieci neuronowe
MATLAB
wind power plants
prediction methods
artificial neural networks
Opis:
Liberalizacja rynku energii elektrycznej sprawiła, że branża elektroenergetyczna przechodzi obecnie dynamiczny rozwój różnych jej obszarów (aspektów). Jednym z aspektów jest prognozowanie mocy jednostek wytwórczych źródeł wiatrowych. W prognozowaniu wykorzystuje się różnego rodzaju narzędzia matematyczne. Autor niniejszej publikacji poświęcił szczególną uwagę sztucznym sieciom neuronowym. Za pomocą modeli neuronowych istnieje możliwość predykcji generacji mocy wytwórczej farm wiatrowych. Budowa modelu prognostycznego wymaga umiejętności programistycznych. Powszechnym środowiskiem programistycznym, umożliwiającym budowę modeli, jest oprogramowanie naukowo-techniczne MATLAB. Wykorzystując wbudowane funkcje (gotowe moduły) istnieje możliwość zbudowania modelu prognostycznego farmy wiatrowej. W artykule przedstawiono sposób zamodelowania wybranej struktury neuronowej za pomocą modułu Neural Toolbox oraz przeprowadzono test nauczonej sieci.
The liberalization of the electricity market has made electric power industry is undergoing rapid development its different areas (aspects). One aspect is the forecasting power generating units wind sources. The prediction uses various mathematical tools. The author of this publication has devoted special attention to artificial neural networks. Using neural models can predict power generation manufacturing of wind farms. Construction of a predictive model requires programming skills. A common programming environment that allows the construction of models, is the scientific and technical software MATLAB. Using the built-in (ready modules) it is possible to build a predictive model of the wind farm. This article shows you how to model a neural structure chosen by Neural Toolbox module and performed background and sensor network test.
Źródło:
Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej; 2012, 31; 123-126
1425-5766
2353-1290
Pojawia się w:
Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Krótkoterminowe prognozowanie dynamicznej obciążalności linii z wykorzystaniem techniki sztucznej inteligencji
The dynamic line rating short-term forecasting with the use of artificial intelligence technique
Autorzy:
Babś, Adam
Samotyjak, Tomasz
Powiązania:
https://bibliotekanauki.pl/articles/266825.pdf
Data publikacji:
2019
Wydawca:
Politechnika Gdańska. Wydział Elektrotechniki i Automatyki
Tematy:
dynamiczna obciążalność linii
prognozowanie parametrów pogodowych
sztuczne sieci neuronowe
dynamic line rating
weather forecasting
artificial neural networks
Opis:
W referacie przedstawiono sposób prognozowania parametrów pogodowych takich jak temperatura, prędkość i kierunek wiatru oraz natężenie promieniowania słonecznego, które są podstawą do wyznaczania dynamicznej obciążalności linii napowietrznych. Do krótkoterminowej prognozy warunków pogodowych wykorzystano jedną z metod technik sieci neuronowych tj. dynamiczną nieliniową autoregresyjną sieć neuronową (NAR). Przykład obliczeniowy prognoz warunków pogodowych wykorzystuje rzeczywiste dane z kilku stacji pogodowych ze zbioru ponad 350 stacji mierzących dane pogodowe na terenie kraju. Przyjmując symetryczny bezwzględny błąd procentowy (SMAPE) oszacowano dokładność prognozy oraz porównano ją z pomiarami rzeczywistymi oraz z prognozą pozyskiwaną od podmiotu komercyjnego. Obliczenia i symulacje przeprowadzono w środowisku MATLAB, umożliwiając wykorzystanie opisanej metody prognozowania w istniejących systemach Dynamicznej Obciążalności Linii (DOL).
The paper presents the method of forecasting weather parameters such as temperature, wind speed and direction, as well as the solar irradiation, which are the basis for determining the dynamic load capacity of overhead lines. For the short-term forecast of weather conditions one of the methods of neural network techniques was used, i.e. a dynamic non-linear autoregressive neural network (NAR). The calculation example of weather forecasts uses real data from several weather stations from a set of over 350 stations measuring weather data across the country. Assuming a symmetrical absolute percentage error (SMAPE), the accuracy of the forecast was estimated and compared with the actual measurements and the forecast obtained from the commercial entity. Calculations and simulations were carried out in the MATLAB environment, enabling the use of the described prediction method in the existing Dynamic Line Rating systems (DOL).
Źródło:
Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej; 2019, 62; 49-53
1425-5766
2353-1290
Pojawia się w:
Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analiza sceny przy użyciu głębokich sieci neuronowych typu YOLO
Scene analysis using YOLO neural network
Autorzy:
Mikołajczyk, Mateusz
Kwasigroch, Arkadiusz
Grochowski, Michał
Powiązania:
https://bibliotekanauki.pl/articles/267008.pdf
Data publikacji:
2019
Wydawca:
Politechnika Gdańska. Wydział Elektrotechniki i Automatyki
Tematy:
sztuczne sieci neuronowe
detekcja obiektów
przetwarzanie obrazu
uczenie głębokie
artificial neural networks
object detection
image processing
deep learning
Opis:
W artykule opisany został problem analizy sceny na obrazach oraz sekwencjach video. Zadanie analizy sceny polega na detekcji, lokalizacji i klasyfikacji obiektów znajdujących się na obrazach. Zaimplementowany system wykorzystuje głęboką sieć neuronową, której struktura oparta została na architekturze YOLO (You Only Look Once). Niskie zapotrzebowania obliczeniowe wybranej architektury pozwala na wykonywanie detekcji w czasie rzeczywistym z zadowalającą dokładnością. W pracy przeprowadzono również badania nad doborem odpowiedniego optymalizatora wykorzystywanego w procesie uczenia. Jako przykładową aplikację wybrano analizę ruchu ulicznego w której skład wchodzi wykrywanie i lokalizacja obiektów takich jak m.in. samochody, motocykle czy sygnalizacja świetlna. Systemy tego typu mogą być wykorzystywane w wszelkiego typu systemach analizy wizyjnej otoczenia np. w pojazdach autonomicznych, systemach automatycznej analizy video z kamer przemysłowych, systemach dozoru czy analizy zdjęć satelitarnych.
The paper describes the problem of scene analysis in images and video sequences. The task of scene analysis is to detect, locate and classify objects in images. As an example of an application, traffic analysis was chosen, which includes the detection and location of objects such as cars, motorcycles or traffic lights. The implemented system uses a deep neural network, whose structure is based on the YOLO (You Only Look Once) architecture. Low computing requirements of the chosen architecture allows performing real-time detection with satisfactory accuracy. The work also included a study on the selection of an appropriate optimizer used in the learning process. The program correctly detects objects with a large surface area, allowing the system to be used in traffic analysis. The work also showed that using the ADAM algorithm allowed significantly shorten the training time of the neural network. Systems of this type can be used in many types of video analysis systems such as autonomous vehicles, automatic video analysis systems with CCTV cameras, surveillance systems or satellite image analysis.
Źródło:
Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej; 2019, 68; 37-40
1425-5766
2353-1290
Pojawia się w:
Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wykorzystanie sztucznych sieci neuronowych do zmniejszenia błędów przetworników impedancji
Error correction of impedance-voltage converter with neural network application
Autorzy:
Wrzuszczak, M.
Khoma, Y.
Powiązania:
https://bibliotekanauki.pl/articles/266534.pdf
Data publikacji:
2016
Wydawca:
Politechnika Gdańska. Wydział Elektrotechniki i Automatyki
Tematy:
przetwornik impedancja-napięcie
sztuczne sieci neuronowe
korekcja wyników pomiarów
impedance to voltage converter
artificial neural network
measurement error correction
Opis:
Przetworniki impedancja – napięcie (Z/U) stanowią podstawowy element komputerowych tomografów impedancyjnych. W artykule przedstawiono sposób zmniejszenia błędów przetwarzania przetwornika Z/U z zastosowaniem sztucznej sieci neuronowej wielowarstwowej, perceptronowej (MLP). Dokładność metody porównano z dokładnością uzyskaną w przypadku wyznaczania poprawek dla dwu składowych impedancji: rezystancyjnej i reaktancyjnej na podstawie wzorów analitycznych wyprowadzonych dla schematu zastępczego układu.
Impedance – voltage transducer (Z/U) are fundamental circuits in Impedance Tomography devices. In the paper the transducer error reducing method for resistance and reactance components of impedance with Multi-Layer Perceptron artificial neural network application is presented. The accuracy of the method is compared with the values calculated with analytical formulas derived for equivalent circuit of the transducer. The consideration presented in the paper focuses only on decreasing the processing error of the impedance/voltage transducer (Z/U), neglecting errors being introduced by following electronic processing stages i.e. phase detector and analog /digital converter.
Źródło:
Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej; 2016, 49; 133-136
1425-5766
2353-1290
Pojawia się w:
Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
System wspomagający diagnostykę czerniaka złośliwego przy pomocy metod przetwarzania obrazu i algorytmów inteligencji obliczeniowej
Decision system supporting melanomena detection with the usage of image processing and computational intelligence methods
Autorzy:
Mikołajczyk, A.
Kwasigroch, A.
Grochowski, M.
Powiązania:
https://bibliotekanauki.pl/articles/269110.pdf
Data publikacji:
2016
Wydawca:
Politechnika Gdańska. Wydział Elektrotechniki i Automatyki
Tematy:
diagnostyka
wspomaganie decyzji
przetwarzanie obrazu
sztuczne sieci neuronowe
czerniak złośliwy
diagnostics
decision support
image processing
artificial neural networks
melanoma malignant
Opis:
Nowotwory skóry są najczęściej spotykanymi nowotworami na świecie. Czerniaki złośliwe stanowią od około 5 do 7% wszystkich nowotworów złośliwych skóry u człowieka. Ich wczesne zdiagnozowanie jest kluczowym czynnikiem w późniejszej pomyślnej terapii. Niniejsza praca zawiera propozycję rozwinięcia i zautomatyzowania najważniejszej metody diagnozowania czerniaków, metody ABCD Stoltza. W artykule przedstawiono koncepcję i implementację zautomatyzowanego systemu do diagnostyki znamion skórnych pod kątem wykrycia czerniaka zł ościowego. Zaproponowano nową, rozszerzoną wersję metody dermatoskopowej ABCD i zaimplementowano niezbędne algorytmy w środowisku Matlab. Główne cechy znamion skórnych o charakterze nowotworowym są wyszukiwane automatycznie przy pomocy metod przetwarzania obrazu oraz opracowanych algorytmów. Decyzja na temat rozpoznania lub nie czerniaka złośliwego podejmowana jest przez sztuczną sieć neuronową, wnioskującą na podstawie wskaźników wyznaczonych na etapie przetwarzania obrazów. Omawiany system wspomagania decyzji może służyć jako narzędzie usprawniające pracę lekarzy pierwszego kontaktu lub jako system umożliwiający szybkie samobadanie skóry przez pacjentów. Aplikację przetestowano na 126 znamionach skórnych. Uzyskano czułość równą 98% oraz swoistość równą 73%, co jest bardzo dobrym osiągnięciem.
Skin cancer is the most common cancer in the world. Malignant melanomas make up about 5-7% of all types of human skin cancer. The work describes the development process of an automated system purposed for the diagnosis of skin lesions in order to detect a malignant melanoma. The application should be used as a decision support system for primary care physicians or as a system capable of self-examination of the skin. When designing an application author developed and proposed a new, enhanced version of the ABCD dermatoscopic method of Stoltz. To describe main features of skin lesions for malignancy, image processing methods were used. In addition, application was trained by artificial neural network, which acts as a specialist doctor, who is responsible of making a diagnosis based on these features. The application has been tested on 126 the skin moles. It gets high final score with a sensitivity of 98% and specificity equal to 73.08%.
Źródło:
Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej; 2016, 51; 119-122
1425-5766
2353-1290
Pojawia się w:
Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Performance analysis of an RFID-based 3D indoor positioning system combining scene analysis and neural network methods
Analiza systemu lokalizacji 3D w pomieszczeniu opartego na technologi RFID i łączącego metodę analizy sceny ze sztucznymi sieciami neuronowymi
Autorzy:
Jachimczyk, B. S.
Dziak, D. M.
Kulesza, W. J.
Powiązania:
https://bibliotekanauki.pl/articles/268492.pdf
Data publikacji:
2013
Wydawca:
Politechnika Gdańska. Wydział Elektrotechniki i Automatyki
Tematy:
indoor positioning system
neural network
radio frequency identification
scene analysis
analiza sceny
identyfikacja radiowa
system pozycjonowania wewnątrz pomieszczeń
sztuczne sieci neuronowe
Opis:
The main purpose of this research is to improve localization accuracy of an active Radio Frequency Identification, RFID tag, in 3D indoor space. The paper presents a new RFID based 3D Indoor Positioning System which shows performance improvement. The proposed positioning system combines two methods: the Scene Analysis technique and Artificial Neural Network. The results of both simulation using Log-Distance Path Loss Model and physical experiments validate that the proposed positioning system improves the localization accuracy of an RFID tag compared with well-known Scene Analysis technique solutions.
Głównym celem tej pracy badawczej jest poprawa dokładności systemu lokalizacji 3D w przestrzeni zamkniętej, aktywnego identyfikatora RFID. Proponowany system lokalizacji stanowi hybryde dwóch metod: Analizy Sceny oraz Sztucznych Sieci Neuronowych. W pracy tej przedstawiono model proponowanego rozwiązania, a w celu walidacji systemu wykonano badania symulacyjne modelu komputerowego wykorzystującego m.in. Logarytmiczny Model Propagacji Fali Radiowych. Przeprowadzono również badania na modelu rzeczywistym w pomieszczeniu zamknietym o rozmiarach geometrycznych 5,13 m×4,50 m×2 m, które potwierdziły poprawność wybranego parametru propagacji sygnału radiowego. Uzyskane wyniki potwierdzają, że proponowany system lokalizacji 3D, charakteryzuje się wysoką dokładnością pozycjonowania aktywnego identyfikatora RFID. Uzyskana dokładność pozycjonowania, jest lepsza niż 0,5 m. Badania potwierdzaja założona hipotezę, że proponowany system lokalizacji 3D w przestrzeni zamkniętej charakteryzuje się lepszą dokładnością niż znane rozwiązania oparte na technice Analizy Sceny.
Źródło:
Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej; 2013, 34; 29-33
1425-5766
2353-1290
Pojawia się w:
Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Możliwości zwiększenia wartości rynkowej produkcji poprzez optymalizację harmonogramów pracy elektrowni wodnej na dobę następną
Possibilities to increase production market value through a day ahead hydro power plant schedules optimization
Autorzy:
Pakulski, Tomasz
Powiązania:
https://bibliotekanauki.pl/articles/267020.pdf
Data publikacji:
2019
Wydawca:
Politechnika Gdańska. Wydział Elektrotechniki i Automatyki
Tematy:
prognozowanie cen energii
sztuczne sieci neuronowe
elektrownia wodna
zwiększenie wartości rynkowej produkcji
energy prices forecasting
artificial neural network
hydropower plant
market value production increase
Opis:
Opracowanie ma na celu przedstawienie możliwości zwiększenia wartości rynkowej produkcji elektrowni wodnych (EW) poprzez cenową optymalizację harmonogramów ich pracy na dobę następną. W referacie przedstawiono koncepcję prognozowania cen energii na Towarowej Giełdzie Energii (TGE) na podstawie określonych w Krajowym Systemie Elektroenergetycznym (KSE) warunków popytowo - podażowych. Zaprezentowano wyniki testowania oraz walidacji modeli prognostycznych, wykorzystujących metody sztucznej inteligencji, pod kątem poprawności prognozowania oraz odwzorowania dobowych profili cenowych. Wykazano, że poprzez zmianę dobowego harmonogramowania pracy EW istnieje możliwość zwiększenia wartości rynkowej produkcji EW w okresie średniorocznym o ok. 5-7 % w stosunku do wariantu aktualnego.
The study aims at presenting the possibilities of hydropower plants (HPPs) market value production increase through a day ahead pricing schedule optimization. The change of HPPs planning system in Poland results from the new provisions introduced in national legislation, in particular from the validity of the renewable energy sources act. The approach presented in this paper is based on the change of current HPPs schedules by using energy price forecasts. The paper presents the concept of energy price forecasting at the Polish Power Exchange (PPE) based on the demand and supply conditions defined in the National Power System. The results of testing and validation forecast models using artificial intelligence methods were presented. The research was carried out to check correctness of forecasting systems and the mapping of daily price profiles in various conditions. It has been shown that it is possible to increase the HPPs production market value by changing the daily HPPs operation schedule by about 5-7% compared to the present case. The risk factors that may contribute to the reduction of the expected income were indicated. Potential areas for further growth in the production market value were presented.
Źródło:
Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej; 2019, 63; 81-84
1425-5766
2353-1290
Pojawia się w:
Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-10 z 10

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies