Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Sieci neuronowe" wg kryterium: Temat


Tytuł:
Implementacja sztucznych sieci neuronowych w środowisku LabVIEW
Artificial neural networks in LabVIEW
Autorzy:
Rafiński, L.
Powiązania:
https://bibliotekanauki.pl/articles/268930.pdf
Data publikacji:
2008
Wydawca:
Politechnika Gdańska. Wydział Elektrotechniki i Automatyki
Tematy:
sztuczne sieci neuronowe
artificial neural networks
Opis:
Przedstawiono możliwości oraz strukturę zrealizowanego przez autora modułu do implementacji sztucznych sieci neuronowych w środowisku LabVIEW.
The article shows the structure and capabilities of a LabVIEW module for the artficial neural networks implementation designed by the author.
Źródło:
Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej; 2008, 25; 141-143
1425-5766
2353-1290
Pojawia się w:
Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Możliwości poprawy jakości prognoz generacji wiatrowej przy wykorzystaniu dostępnych informacji jako zmiennych objaśniających
Opportunities to improve the qualty of forecasts of wind generation using available information as expanatory variables
Autorzy:
Magulski, R.
Pakulski, T.
Powiązania:
https://bibliotekanauki.pl/articles/266365.pdf
Data publikacji:
2015
Wydawca:
Politechnika Gdańska. Wydział Elektrotechniki i Automatyki
Tematy:
prognozowanie
metody statystyczne
sieci neuronowe
forecasting
statistical methods
neural network
Opis:
W artykule przedstawiono wyniki analiz dotyczących możliwości prognozowania generacji wybranej farmy wiatrowej (FW), realizowanych za pomocą zróżnicowanych metod predykcyjnych, wykorzystujących odmienny zakres danych pomiarowych i prognostycznych, dostępnych na farmie i w jej otoczeniu. Analizy koncentrowały się na ocenie błędów uzyskiwanych prognoz oraz doborze danych wejściowych do modeli prognostycznych i ocenie ich wpływu na poprawę jakości predykcji.
The article presents the results of analyzes refer to the capabilities of wind generation forecasting in selected case study, implemented by means of different methods of prediction, using a different range of measurement and forecasting data available Analyses focused on the evaluation of forecasts generated errors, input data of forecasting models selection and evaluation of the impact on the quality of prediction.
Źródło:
Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej; 2015, 42; 167-170
1425-5766
2353-1290
Pojawia się w:
Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Rejestracja, parametryzacja i klasyfikacja alofonów z wykorzystaniem bimodalności
Regcording, parameterization and classification of allophones employing bimodal approach
Autorzy:
Zaporowski, S.
Cygert, S.
Szwoch, G.
Korvel, G.
Czyżewski, A.
Powiązania:
https://bibliotekanauki.pl/articles/269055.pdf
Data publikacji:
2018
Wydawca:
Politechnika Gdańska. Wydział Elektrotechniki i Automatyki
Tematy:
sieci neuronowe
klasyfikacja
facial motion capture
neural networks
classification process
Opis:
Praca dotyczy rejestracji i parametryzacji alofonów w języku angielskim z wykorzystaniem dwóch modalności. W badaniach dokonano rejestracji wypowiedzi w języku angielskim mówców, których znajomość tego języka odpowiada poziomowi rodowitego mówcy. W kolejnym etapie wyodrębnione zostały alofony z nagrań fonicznych i odpowiadające im sygnały wizyjne. W procesie tworzenia wektorów cech wykorzystano odrębne systemy parametryzacji, osobne dla każdej modalności. Do parametryzacji sygnału fonicznego użyto typowych deskryptorów stosowanych w obszarze rozpoznawania mowy i muzyki. W nagraniach z systemu przechwytywania ruchu zaproponowano własne rozwiązania. Do klasyfikacji alofonów wykorzystano sieci neuronowe oraz maszynę wektorów nośnych w podejściu jednoi dwumodalnym. Stwierdzono, że skuteczność rozpoznawania wzrasta wraz z wykorzystaniem więcej niż jednej modalności.
The paper concerns the recording and parameterization of allophones in English using two modalities. In the research, the English speakers' statements were recorded. Those speakers’s language proficiency corresponds to the level of the native speaker. In the next stage, allophones from audio recordings and corresponding visual signals were isolated. In the process of creating feature vectors, separate parameterization systems were used for each modality. For the audio signal parameterization, typical descriptors used in the area of speech and music recognition were chosen. In the case of the motion capture system own solutions were proposed. For the purpose of allophones classification, neural networks and the suport vector machine were used in both approaches. It has been found that the recognition efficiency increases with the use of more than one modality.
Źródło:
Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej; 2018, 60; 135-138
1425-5766
2353-1290
Pojawia się w:
Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Diagnozowanie stanu retinopatii cukrzycowej przy pomocy głębokich sieci neuronowych
Classification of the stage of the disease by deep neural networks
Autorzy:
Jarzembiński, B.
Kwasigroch, A.
Grochowski, M.
Powiązania:
https://bibliotekanauki.pl/articles/267831.pdf
Data publikacji:
2018
Wydawca:
Politechnika Gdańska. Wydział Elektrotechniki i Automatyki
Tematy:
uczenie głębokie
sieci neuronowe
retinopatia cukrzycowa
deep learning
neural networks
diabetic retinopathy
Opis:
W referacie opisano problem wykrywania oraz klasyfikacji stanu retinopatii cukrzycowej ze zdjęć dna oka przy pomocy głębokich sieci neuronowych. Retinopatia cukrzycowa jest chorobą oczu często występującą u osób z cukrzycą. Nieleczona prowadzi do uszkodzenia wzroku, a nawet ślepoty. W pracy badawczej opracowano system wykrywania retinopatii cukrzycowej na podstawie zdjęć dna oka. Opracowana sieć neuronowa przypisuje stan choroby w 5 stopniowej skali – od braku choroby do najbardziej zaawansowanego stanu choroby. Zaproponowano specjalny system kodowania klas w celu uchwycenia wielkości różnicy pomiędzy rzeczywistymi a predykowanymi stanami choroby. Uzyskano wysokie wyniki klasyfikacji na zbiorze testowym. W celu oceny skuteczności działania systemu wykorzystano miary statystyczne takie jak ważona Kappa i dokładność.
In the paper we described computer aided detection system of diabetic retinopathy based on fundus photos of retina. Diabetic retinopathy is an eye disease associated with diabetes. Non-treated diabetic retinopathy leads to sight degeneration and even blindness. Early detection is crucial due to provide effective treatment. Currently, diabetic retinopathy detection is time consuming process, done manualy by medical specialist. The disease is dangerous issue in places where the availability of phisicians is limited. We employed the computer system that detect diabetic retinopathy and assess a stage of the disease based on retinal photo of fundus. We used one of the best image classification system – deep neural networks. Employed system assess the stage of the disease in 5 level scale – from absence of disease to the most severe stage of disease. We employed transfer learning and data augmentation to enhance classification result. Moreover we proposed special class coding system to catch the difference between real and predicted stage of disease. We tested employed system using different statistical measures like accuracy, sensitivity, specificity and Kappa score.
Źródło:
Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej; 2018, 60; 37-40
1425-5766
2353-1290
Pojawia się w:
Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zastosowanie algorytmów sztucznych sieci neuronowych do prognozowania zużycia energii elektrycznej
Application artificial neural networks for electricity prediction
Autorzy:
Włas, M.
Powiązania:
https://bibliotekanauki.pl/articles/266363.pdf
Data publikacji:
2016
Wydawca:
Politechnika Gdańska. Wydział Elektrotechniki i Automatyki
Tematy:
prognozowanie zużycia energii
sztuczne sieci neuronowe
forecasting energy consumption
artificial neural network
Opis:
W artykule przestawiono algorytm przewidywania zużycia energii elektrycznej budynków mieszkalnych z wykorzystaniem informacji o produkcji i warunkach atmosferycznych. W artykule została zaproponowana własna metoda predykcji z wykorzystaniem wielowarstwowej jednokierunkowej sztucznej sieci neuronowej. W pracy zostały przedstawione podstawowe pojęcia z zakresu sieci neuronowych oraz testy działania programu prognozującego na podstawie rzeczywistych danych pomiarowych. Głównym zadaniem badawczym było sprawdzenie dokładności algorytmu predykcji do prognozowania zużycia energii elektrycznej. Ma to na celu uzyskanie programu, którego wyniki o charakterze ilościowym będą wykorzystywane do prognozowania potrzeb zakupowych na TGE (Towarowej Giełdzie Energii) przy udziale metody zakupu energii elektrycznej na Rynku Dnia Następnego.
This paper presents a flexible approach to forecasting of energy consumption in residential buildings, using time series analysis and neural networks. Our goal is to develop a one day-ahead forecasting model based on an artificial neural network using information about temperature of air. The article has been proposed neural network prediction method using a multilayered feed-forward artificial neural network with the backpropagation training algorithm. Experimental results have showed that the proposed neural network can faithfully reproduce the curve of daily energy consumption with a percentage error less than 3.74%.
Źródło:
Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej; 2016, 51; 217-220
1425-5766
2353-1290
Pojawia się w:
Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zastosowanie sztucznych sieci neuronowych do prognozowania cen na giełdzie energii
Using artificial neural networks to forecasting the energy exchange price
Autorzy:
Miller, A.
Bućko, P.
Powiązania:
https://bibliotekanauki.pl/articles/268589.pdf
Data publikacji:
2014
Wydawca:
Politechnika Gdańska. Wydział Elektrotechniki i Automatyki
Tematy:
prognoza
sztuczne sieci neuronowe
rynek energii
MATLAB
prediction methods
artificial neural networks
energy market
Opis:
Jednym z aktualnych zagadnień gospodarczych jest prognozowanie cen na Giełdzie Energii. Autorzy publikacji proponują wykorzystanie do tego celu sztucznych sieci neuronowych i oprogramowania MATLAB. Opisują narzędzie do prognozy krótkoterminowej Rynku Dnia Następnego. W artykule przedstawiono sposób kalibracji danych. Opisano również użyte funkcje aktywacji w warstwach neuronowych wraz z konsekwencjami z nich wynikającymi dla samego procesu nauczania. W końcowej części artykułu porównano prognozę sieci neuronowej z rzeczywistym przebiegiem notowań na Giełdzie Energii.
One of the current economic problem is the Energy Exchange price forecasting. Authors’ proposal is to implement artificial neural network and MATLAB package for price forecasting. Program for short-time forecast of the Next Day Market price is described. Data normalisation methods are presented in the paper. Neural activation functions are described and the consequences of choosing activation function on neural network learning process are discussed. In the conclusion, comparison of Energy Exchange forecast price and real prices is presented.
Źródło:
Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej; 2014, 40; 69-72
1425-5766
2353-1290
Pojawia się w:
Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Klasyfikacja sygnału EKG przy użyciu konwolucyjnych sieci neuronowych
ECG signal classification using convolutional neural networks
Autorzy:
Ogryczak, Maria
Powiązania:
https://bibliotekanauki.pl/articles/1841908.pdf
Data publikacji:
2020
Wydawca:
Politechnika Gdańska. Wydział Elektrotechniki i Automatyki
Tematy:
EKG
arytmia
uczenie głębokie
konwolucyjne sieci neuronowe
ECG
arrhythmia
deep learning
convolutional neural networks
Opis:
Podniesienie jakości i zautomatyzowanie procesu diagnozy jest istotnym elementem rozwoju medycyny i samokontroli stanu zdrowia pacjentów. Od dłuższego czasu istnieją i są stosowane różne metody analizy i klasyfikacji sygnału EKG, jednak nie zawsze ich dokładność jest zadowalająca. Największym problemem jest trudność rozpoznania istniejącej nieprawidłowości, w przypadku gdy jej reprezentacja jest podobna do prawidłowej pracy serca np. przedwczesny skurcz komorowy. W ostatnich latach obserwujemy dynamiczny rozwój nowego narzędzia z rodziny metod sztucznej inteligencji - głębokich sieci neuronowych. Cechuje je duża selektywność klasyfikacji nawet najbardziej skomplikowanych sygnałów w postaci szeregów czasowych czy obrazów, często na podstawie cech niezauważalnych dla ludzkiego oka. W niniejszym artykule przedstawiono sposób analizy zarejestrowanego sygnału elektrycznej czynności mięśnia sercowego (EKG), na podstawie pojedynczego, wyodrębnionego cyklu pracy serca. Celem badania było zdiagnozowanie sześciu różnych typów ewolucji mogących świadczyć o występowaniu arytmii. Badania przeprowadzono z wykorzystaniem ogólnodostępnej bazy danych MIT-BIH Arrhythmia Database. W celu podniesienia jakości ekstrakcji cech analizowanego sygnału, dokonano jego dekompozycji czasowo-przestrzennej przy wykorzystaniu transformacji falkowej. W rezultacie uzyskano zadowalające wyniki klasyfikacji: dokładność 92,4% i swoistość (zdolność do wykrycia braku cechy) 96,5%. Osiągnięte wyniki potwierdzają skuteczność systemu automatycznej klasyfikacji cyklów pracy serca, mogącego wspomóc lekarzy w procesie żmudnej analizy dużej liczby zarejestrowanych danych.
Automation and improvement of diagnostic process is a vital element of medicine development and patient’s condition self-control. For a long time different ECG signal classification methods exist and are successfully applied, nevertheless their accuracy is not always satisfying enough. The lack of identification of an existing abnormality, which is very similar to a normal heartbeat is the biggest issue - for example premature ventricular contraction. Over the past few years there was a rapid development of an artificial intelligence tool - deep neural networks. They characterise by a high classification ability even the most complicated patterns in the form of time series or images, often based on features unnoticeable for human eye. In this paper the approach to electrocardiography (ECG) analysis was presented, taking into consideration a single heartbeat. The aim of this research was diagnosis of six different types of beat that may indicate arrhythmia occurrence. The study were performed on the public database MIT-BIH Arrhythmia Database. In order to enhance feature extraction quality of the analysed signal the time-space decomposition was made using wavelet transform. The satisfying performance with 92.4% accuracy and 96.5% specificity were accomplished. The achieved results may be used to develop an automatic heartbeat classification system that would significantly contribute medicians in the arduous process of data analysis.
Źródło:
Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej; 2020, 71; 51-54
1425-5766
2353-1290
Pojawia się w:
Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wykorzystanie sztucznych sieci neuronowych do wykrywania i rozpoznawania tablic rejestracyjnych na zdjęciach pojazdów
Detection and recognition of registration plates on pictures of vehicles using artificial neural network
Autorzy:
Huzarek, M.
Rutkowski, T. A.
Powiązania:
https://bibliotekanauki.pl/articles/267795.pdf
Data publikacji:
2015
Wydawca:
Politechnika Gdańska. Wydział Elektrotechniki i Automatyki
Tematy:
przetwarzanie obrazu
lokalizacja obiektów
rozpoznawanie wzorców
sieci neuronowe
image processing
object localization
pattern recognition
neural networks
Opis:
W artykule przedstawiono koncepcję algorytmu wykrywania i rozpoznawania tablic rejestracyjnych (AWiRTR) na obrazach cyfrowych pojazdów. Detekcja i lokalizacja tablic rejestracyjnych oraz wyodrębnienie z obrazu tablicy rejestracyjnej poszczególnych znaków odbywa się z wykorzystaniem podstawowych technik przetwarzania obrazu (przekształcenia morfologiczne, wykrywanie krawędzi) jak i podstawowych danych statystycznych obiektów wykrytych w obrazie (np. stosunek szerokość do wysokość obiektu). Natomiast za rozpoznawanie poszczególnych znaków odpowiedzialna jest wielowarstwowa, jednokierunkowa sztuczna sieć neuronowa. Przedstawiony algorytm został zaimplementowany i zweryfikowany w środowisku Matlab/Simulink. Pomimo wykorzystania w algorytmie AWiRTR dobrze znanych z literatury metod lokalizacji, segmentacji i rozpoznawania wzorców, otrzymane w trakcie weryfikacji algorytmu wyniki wskazują jego efektywność na poziomie 96,26%. Jest ona porównywalna do efektywności innych algorytmów AWiRTR opisywanych w literaturze.
A license plate detection and recognition system has basically three modules for: localization of the plate region using the digital image of the car, extraction of the characters from digital image of the license plate, and recognition of the characters using a suitable identification method. In this paper, an algorithm is designed that can localize of the plate and extract of the characters from digital image of the license plate with the basics image processing techniques (morphological transformations, edge detection) and with the statistical data (e.g. width height ratio) of the objects identified in the analyzed digital image. It is done at the second and third stage of the presented algorithm, respectively. Finally, at the fourth stage of the presented algorithm, the character recognition is done by multilayer, one directional artificial neural network. Algorithm was implemented and verified in the Matlab/Simulink environment. Experimental results demonstrate promising efficiency of the proposed algorithm: 98% in the task of license plate localization, 95,69% in the task of characters extraction, and 95,11% in the task of characters recognition.
Źródło:
Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej; 2015, 47; 67-70
1425-5766
2353-1290
Pojawia się w:
Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Rozpoznawanie obiektów przez głębokie sieci neuronowe
Object classification with deep neural networks
Autorzy:
Kwasigroch, A.
Grochowski, M.
Powiązania:
https://bibliotekanauki.pl/articles/268601.pdf
Data publikacji:
2018
Wydawca:
Politechnika Gdańska. Wydział Elektrotechniki i Automatyki
Tematy:
uczenie głębokie
sieci neuronowe
sztuczna inteligencja
przetwarzanie obrazu
deep learning
neural networks
artificial intelligence
image processing
Opis:
W referacie zaprezentowane zostaną wyniki badań nad rozpoznawaniem obiektów w różnych warunkach za pomocą głębokich sieci neuronowych. Przeanalizowano działanie dwóch struktur – ResNet50 oraz VGG19. Systemy rozpoznawania obrazu wytrenowano oraz przetestowano na reprezentatywnej, bazie zawierającej 25 tys. zdjęć psów oraz kotów, która znacznie upraszcza analizowanie działania systemów ze względu na łatwość interpretacji zdjęć przez człowieka. Zbadano wpływ pojawienia się nietypowych zdjęć na wynik klasyfikacji. Ponadto przeanalizowano zdjęcia niepoprawnie sklasyfikowane i porównano je z interpretacjami człowieka. Uzyskano bardzo wysokie wyniki klasyfikacji. Do oceny systemów użyto miar statystycznych takich jak: dokładność, czułość, swoistość, krzywe ROC.
Deep neural networks are modern algorithms from the family of artificial intelligence, that are widely used these days for task of an image analysis. In this paper, we present results of research on deep neural network for image recognition. We tested 2 different neural architectures, namely: modified VGG19, ResNet50. In order to improve the classification results we employed two methods called dropout and transfer learning. The systems were trained on the dataset containing 22 000 training images and 3000 test images. The dataset used contains different pictures of animals (cats and dogs). The dataset of animals make analyses of network performance easier, because they are easy to interpret by human. The employed systems were tested qualitatively and quantitatively. The influence of atypical inputs were examined, also. Moreover, the analysis of improperly classified images was performed. We achieved high classification results. In order to evaluate the classification performance we utilized the following set of statistical measures: accuracy, specificity, sensitivity and ROC curves.
Źródło:
Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej; 2018, 60; 63-66
1425-5766
2353-1290
Pojawia się w:
Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Budowa modelu prognostycznego farmy wiatrowej w środowisku MATLAB
Construction of wind farms forecasting model in MATLAB
Autorzy:
Rubanowicz, T.
Powiązania:
https://bibliotekanauki.pl/articles/268666.pdf
Data publikacji:
2012
Wydawca:
Politechnika Gdańska. Wydział Elektrotechniki i Automatyki
Tematy:
elektrownie wiatrowe
prognozowanie mocy
sztuczne sieci neuronowe
MATLAB
wind power plants
prediction methods
artificial neural networks
Opis:
Liberalizacja rynku energii elektrycznej sprawiła, że branża elektroenergetyczna przechodzi obecnie dynamiczny rozwój różnych jej obszarów (aspektów). Jednym z aspektów jest prognozowanie mocy jednostek wytwórczych źródeł wiatrowych. W prognozowaniu wykorzystuje się różnego rodzaju narzędzia matematyczne. Autor niniejszej publikacji poświęcił szczególną uwagę sztucznym sieciom neuronowym. Za pomocą modeli neuronowych istnieje możliwość predykcji generacji mocy wytwórczej farm wiatrowych. Budowa modelu prognostycznego wymaga umiejętności programistycznych. Powszechnym środowiskiem programistycznym, umożliwiającym budowę modeli, jest oprogramowanie naukowo-techniczne MATLAB. Wykorzystując wbudowane funkcje (gotowe moduły) istnieje możliwość zbudowania modelu prognostycznego farmy wiatrowej. W artykule przedstawiono sposób zamodelowania wybranej struktury neuronowej za pomocą modułu Neural Toolbox oraz przeprowadzono test nauczonej sieci.
The liberalization of the electricity market has made electric power industry is undergoing rapid development its different areas (aspects). One aspect is the forecasting power generating units wind sources. The prediction uses various mathematical tools. The author of this publication has devoted special attention to artificial neural networks. Using neural models can predict power generation manufacturing of wind farms. Construction of a predictive model requires programming skills. A common programming environment that allows the construction of models, is the scientific and technical software MATLAB. Using the built-in (ready modules) it is possible to build a predictive model of the wind farm. This article shows you how to model a neural structure chosen by Neural Toolbox module and performed background and sensor network test.
Źródło:
Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej; 2012, 31; 123-126
1425-5766
2353-1290
Pojawia się w:
Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Krótkoterminowe prognozowanie dynamicznej obciążalności linii z wykorzystaniem techniki sztucznej inteligencji
The dynamic line rating short-term forecasting with the use of artificial intelligence technique
Autorzy:
Babś, Adam
Samotyjak, Tomasz
Powiązania:
https://bibliotekanauki.pl/articles/266825.pdf
Data publikacji:
2019
Wydawca:
Politechnika Gdańska. Wydział Elektrotechniki i Automatyki
Tematy:
dynamiczna obciążalność linii
prognozowanie parametrów pogodowych
sztuczne sieci neuronowe
dynamic line rating
weather forecasting
artificial neural networks
Opis:
W referacie przedstawiono sposób prognozowania parametrów pogodowych takich jak temperatura, prędkość i kierunek wiatru oraz natężenie promieniowania słonecznego, które są podstawą do wyznaczania dynamicznej obciążalności linii napowietrznych. Do krótkoterminowej prognozy warunków pogodowych wykorzystano jedną z metod technik sieci neuronowych tj. dynamiczną nieliniową autoregresyjną sieć neuronową (NAR). Przykład obliczeniowy prognoz warunków pogodowych wykorzystuje rzeczywiste dane z kilku stacji pogodowych ze zbioru ponad 350 stacji mierzących dane pogodowe na terenie kraju. Przyjmując symetryczny bezwzględny błąd procentowy (SMAPE) oszacowano dokładność prognozy oraz porównano ją z pomiarami rzeczywistymi oraz z prognozą pozyskiwaną od podmiotu komercyjnego. Obliczenia i symulacje przeprowadzono w środowisku MATLAB, umożliwiając wykorzystanie opisanej metody prognozowania w istniejących systemach Dynamicznej Obciążalności Linii (DOL).
The paper presents the method of forecasting weather parameters such as temperature, wind speed and direction, as well as the solar irradiation, which are the basis for determining the dynamic load capacity of overhead lines. For the short-term forecast of weather conditions one of the methods of neural network techniques was used, i.e. a dynamic non-linear autoregressive neural network (NAR). The calculation example of weather forecasts uses real data from several weather stations from a set of over 350 stations measuring weather data across the country. Assuming a symmetrical absolute percentage error (SMAPE), the accuracy of the forecast was estimated and compared with the actual measurements and the forecast obtained from the commercial entity. Calculations and simulations were carried out in the MATLAB environment, enabling the use of the described prediction method in the existing Dynamic Line Rating systems (DOL).
Źródło:
Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej; 2019, 62; 49-53
1425-5766
2353-1290
Pojawia się w:
Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Estymacja wybranych wskaźników jakości energii elektrycznej w nieopomiarowanych punktach sieci dystrybucyjnej
Estimation of selected power quality indicators at non-measured distribution network points using neural networks
Autorzy:
Firlit, Andrzej
Świątek, Bogusław
Piątek, Krzysztof
Dutka, Mateusz
Siostrzonek, Tomasz
Powiązania:
https://bibliotekanauki.pl/articles/266996.pdf
Data publikacji:
2019
Wydawca:
Politechnika Gdańska. Wydział Elektrotechniki i Automatyki
Tematy:
jakość energii elektrycznej
wskaźniki jakości energii elektrycznej
sieci neuronowe
power quality
power quality indicators
artificial neural networks
Opis:
W artykule przedstawiono metodę umożliwiającą estymację wybranych wskaźników jakości energii elektrycznej w zadanym punkcie sieci elektroenergetycznej na podstawie wskaźników jakości energii elektrycznej zarejestrowanych w punktach leżących w najbliższym otoczeniu. Do estymacji wykorzystano algorytmy sztucznych sieci neuronowych. W rezultacie uzyskano neuronowy model określający relację pomiędzy wskaźnikami jakości energii elektrycznej tego samego typu w sąsiadujących ze sobą punktach. W artkule przedstawiono wyniki analiz i testów dla rzeczywistych warunków pracy sieci dystrybucyjnej.
The article presents a method allowing the estimation of selected power quality indicators at a given point of the power grid based on electricity quality indicators (or other voltage parameters) registered at points in the nearest surroundings. Artificial neural network algorithms were used for the estimation. As a result, a neural model was obtained that determined the relationship between the same power quality indices at neighbouring points. The article presents the results obtained for the real conditions of the distribution network.
Źródło:
Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej; 2019, 67; 17-20
1425-5766
2353-1290
Pojawia się w:
Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analiza sceny przy użyciu głębokich sieci neuronowych typu YOLO
Scene analysis using YOLO neural network
Autorzy:
Mikołajczyk, Mateusz
Kwasigroch, Arkadiusz
Grochowski, Michał
Powiązania:
https://bibliotekanauki.pl/articles/267008.pdf
Data publikacji:
2019
Wydawca:
Politechnika Gdańska. Wydział Elektrotechniki i Automatyki
Tematy:
sztuczne sieci neuronowe
detekcja obiektów
przetwarzanie obrazu
uczenie głębokie
artificial neural networks
object detection
image processing
deep learning
Opis:
W artykule opisany został problem analizy sceny na obrazach oraz sekwencjach video. Zadanie analizy sceny polega na detekcji, lokalizacji i klasyfikacji obiektów znajdujących się na obrazach. Zaimplementowany system wykorzystuje głęboką sieć neuronową, której struktura oparta została na architekturze YOLO (You Only Look Once). Niskie zapotrzebowania obliczeniowe wybranej architektury pozwala na wykonywanie detekcji w czasie rzeczywistym z zadowalającą dokładnością. W pracy przeprowadzono również badania nad doborem odpowiedniego optymalizatora wykorzystywanego w procesie uczenia. Jako przykładową aplikację wybrano analizę ruchu ulicznego w której skład wchodzi wykrywanie i lokalizacja obiektów takich jak m.in. samochody, motocykle czy sygnalizacja świetlna. Systemy tego typu mogą być wykorzystywane w wszelkiego typu systemach analizy wizyjnej otoczenia np. w pojazdach autonomicznych, systemach automatycznej analizy video z kamer przemysłowych, systemach dozoru czy analizy zdjęć satelitarnych.
The paper describes the problem of scene analysis in images and video sequences. The task of scene analysis is to detect, locate and classify objects in images. As an example of an application, traffic analysis was chosen, which includes the detection and location of objects such as cars, motorcycles or traffic lights. The implemented system uses a deep neural network, whose structure is based on the YOLO (You Only Look Once) architecture. Low computing requirements of the chosen architecture allows performing real-time detection with satisfactory accuracy. The work also included a study on the selection of an appropriate optimizer used in the learning process. The program correctly detects objects with a large surface area, allowing the system to be used in traffic analysis. The work also showed that using the ADAM algorithm allowed significantly shorten the training time of the neural network. Systems of this type can be used in many types of video analysis systems such as autonomous vehicles, automatic video analysis systems with CCTV cameras, surveillance systems or satellite image analysis.
Źródło:
Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej; 2019, 68; 37-40
1425-5766
2353-1290
Pojawia się w:
Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analiza istotności cech znamion skórnych dla celów diagnostyki czerniaka złośliwego
Skin lesion features analysis for malignant melanoma classification
Autorzy:
Mikołajczyk, A.
Grochowski, M.
Powiązania:
https://bibliotekanauki.pl/articles/268540.pdf
Data publikacji:
2018
Wydawca:
Politechnika Gdańska. Wydział Elektrotechniki i Automatyki
Tematy:
algorytm ewolucyjny
uczenie maszynowe
sieci neuronowe
systemy wspomagania decyzji
evolutionary algorithm
neural networks
decision support system
machine learning
Opis:
Pomimo dynamicznego rozwoju metod uczenia maszynowego i ich wdrażania do praktyki lekarskiej, automatyczna analiza znamion skórnych wciąż jest nierozwiązanym problemem. Poniższy artykuł proponuje zastosowanie algorytmu ewolucyjnego do zaprojektowania, wytrenowania i przetestowania całych populacji klasyfikatorów (sztucznych sieci neuronowych) oraz ich iteracyjnego udoskonalania w każdej kolejnej populacji, w celu osiągnięcia jak najlepszej dokładności klasyfikacji znamion skórnych. Algorytm zwraca optymalny zestaw cech opisujących obraz dermatoskopowy wraz z proponowaną architekturą sieci neuronowej. Uzyskano dokładność równą 85,83%, swoistość równą 79,07% oraz czułość równą 92,60%.
Despite the dynamic development of machine learning methods, automatic analysis of skin lesions is still open issue. The following article proposes the use of an evolutionary algorithm to design, train, and to test a whole population of classifiers (artificial neural networks) and to iteratively improve them in each subsequent population, in order to achieve the best possible accuracy in the classification of skin lesions task. The algorithm returns an optimal set of features describing the dermatoscopic image together with the proposed architecture of the neural network. High classification results were obtained, in particular: accuracy equal to 85.83%, specificity 79.07% and sensitivity 92.60%.
Źródło:
Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej; 2018, 60; 67-70
1425-5766
2353-1290
Pojawia się w:
Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wykorzystanie sztucznych sieci neuronowych do zmniejszenia błędów przetworników impedancji
Error correction of impedance-voltage converter with neural network application
Autorzy:
Wrzuszczak, M.
Khoma, Y.
Powiązania:
https://bibliotekanauki.pl/articles/266534.pdf
Data publikacji:
2016
Wydawca:
Politechnika Gdańska. Wydział Elektrotechniki i Automatyki
Tematy:
przetwornik impedancja-napięcie
sztuczne sieci neuronowe
korekcja wyników pomiarów
impedance to voltage converter
artificial neural network
measurement error correction
Opis:
Przetworniki impedancja – napięcie (Z/U) stanowią podstawowy element komputerowych tomografów impedancyjnych. W artykule przedstawiono sposób zmniejszenia błędów przetwarzania przetwornika Z/U z zastosowaniem sztucznej sieci neuronowej wielowarstwowej, perceptronowej (MLP). Dokładność metody porównano z dokładnością uzyskaną w przypadku wyznaczania poprawek dla dwu składowych impedancji: rezystancyjnej i reaktancyjnej na podstawie wzorów analitycznych wyprowadzonych dla schematu zastępczego układu.
Impedance – voltage transducer (Z/U) are fundamental circuits in Impedance Tomography devices. In the paper the transducer error reducing method for resistance and reactance components of impedance with Multi-Layer Perceptron artificial neural network application is presented. The accuracy of the method is compared with the values calculated with analytical formulas derived for equivalent circuit of the transducer. The consideration presented in the paper focuses only on decreasing the processing error of the impedance/voltage transducer (Z/U), neglecting errors being introduced by following electronic processing stages i.e. phase detector and analog /digital converter.
Źródło:
Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej; 2016, 49; 133-136
1425-5766
2353-1290
Pojawia się w:
Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies