Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "non-state" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Analysis of the queueing network with a random bounded waiting time of positive and negative customers at a non-stationary regime
Autorzy:
Matalytski, M.
Naumenko, V.
Powiązania:
https://bibliotekanauki.pl/articles/122455.pdf
Data publikacji:
2017
Wydawca:
Politechnika Częstochowska. Wydawnictwo Politechniki Częstochowskiej
Tematy:
G-network
positive and negative customers
random bounded waiting time of customers
non-stationary regime
generation function
non-stationary state probabilities
expected revenues
sieć G
pozytywny klient
negatywny klient
teoria kolejek
czas oczekiwania
Opis:
In the first part of the article, an investigation of an open Markov queueing network with positive and negative customers (G-networks) has been carried out. The network receives two exponential arrivals of positive and negative customers. Negative customers do not receive service. The waiting time of customers of both types in each system is bounded by a random variable having an exponential distribution with different parameters. When the waiting time of a negative customer in the queue is over it reduces the number of positive customers per unit if the system has positive customers. The Kolmogorov system of difference-differential equations for non-stationary state probabilities has been derived. The method for finding state probabilities of an investigated network, based on the use of apparatus of multidimensional generating functions has been proposed. Expressions for finding the mean number of positive and negative customers in the network systems have also been found. In the second part the same network has been investigated, but with revenues. The case when revenues from the network transitions between states are random variables with given mean values has been considered. A method for finding expected revenues of the network systems has been proposed. Obtained results may be used for modeling of computer viruses in information systems and networks and also for forecasting of costs, considering the viruses penetration.
Źródło:
Journal of Applied Mathematics and Computational Mechanics; 2017, 16, 1; 97-108
2299-9965
Pojawia się w:
Journal of Applied Mathematics and Computational Mechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analysis of the queueing network with a random waiting time of negative customers at a non-stationary regime
Autorzy:
Naumenko, V.
Matalytski, M.
Kopats, D.
Powiązania:
https://bibliotekanauki.pl/articles/122923.pdf
Data publikacji:
2016
Wydawca:
Politechnika Częstochowska. Wydawnictwo Politechniki Częstochowskiej
Tematy:
G-network
positive customers
negative customers
random waiting time
heavy-traffic regime
state probabilities
mean characteristics
non-stationary regime
sieci kolejkowe
sieć G
pozytywny klient
negatywny klient
czas oczekiwania
równania różniczkowe
Opis:
In the article a queueing network (QN) with positive customers and a random waiting time of negative customers has been investigated. Negative customers destroy positive customers on the expiration of a random time. Queueing systems (QS) operate under a heavy-traffic regime. The system of difference-differential equations (DDE) for state probabilities of such a network was obtained. The technique of solving this system and finding mean characteristics of the network, which is based on the use of multivariate generating functions was proposed.
Źródło:
Journal of Applied Mathematics and Computational Mechanics; 2016, 15, 3; 111-122
2299-9965
Pojawia się w:
Journal of Applied Mathematics and Computational Mechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Investigation of G-networks with restart at a non-stationary mode and their application
Autorzy:
Matalytski, Mikhail
Naumenko, Victor
Kopats, Dmitry
Powiązania:
https://bibliotekanauki.pl/articles/122538.pdf
Data publikacji:
2019
Wydawca:
Politechnika Częstochowska. Wydawnictwo Politechniki Częstochowskiej
Tematy:
queueing network
G-network
positive and negative customers
non-stationary regime
multiple type customers
signals
restart
nonstationary state probabilities
successive approximation method
sieć kolejkowa
sieć G
sygnały
metoda aproksymacji
aproksymacja
teoria kolejek
pozytywny klient
negatywny klient
Opis:
This article discusses the question of restarting the script, when restart is used by many users of the information network, which can be modelled as a G-network. Negative claims simulate the crash of the script and the re-sending of the request. Investigation of an open queuing network (QN) with several types of positive customers with the phase type of distribution of their service time and one type of negative customers have been carried out. Negative customers are signals whose effect is to restart one customers in a queue. A technique is proposed for finding the probability of states. It is based on the use of a modified method of successive approximations, combined with the method of a series. The successive approximations converge with time to a stationary distribution of state probabilities, the form of which is indicated in the article, and the sequence of approximations converges to the solution of the difference-differential equations (DDE) system. The uniqueness of this solution is proved. Any successive approximation is representable in the form of a convergent power series with an infinite radius of convergence, the coefficients of which satisfy recurrence relations, which is convenient for computer calculations. A model example illustrating the finding of time-dependent probabilities of network states using the proposed technique is also presented.
Źródło:
Journal of Applied Mathematics and Computational Mechanics; 2019, 18, 2; 41-51
2299-9965
Pojawia się w:
Journal of Applied Mathematics and Computational Mechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies