Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "fractional Caputo derivative" wg kryterium: Temat


Wyświetlanie 1-13 z 13
Tytuł:
Analysis of solutions of the 1D fractional Cattaneo heat transfer equation
Autorzy:
Siedlecka, Urszula
Ciesielski, Mariusz
Powiązania:
https://bibliotekanauki.pl/articles/2175501.pdf
Data publikacji:
2021
Wydawca:
Politechnika Częstochowska. Wydawnictwo Politechniki Częstochowskiej
Tematy:
heat transfer
Cattaneo equation
fractional Caputo derivative
Laplace transform
Fourier transform
wymiana ciepła
równanie Cattaneo
pochodna ułamkowa Caputo
transformata Laplace'a
transformata Fouriera
Opis:
In this paper, a solution of the single-phase lag heat conduction problem is presented. The research concerns the generalized 1D Cattaneo equation in a whole-space domain, where a second order time derivative is replaced by the fractional Caputo derivative. The Fourier-Laplace transform technique is used to determine a solution of the considered problem. The numerical inversion of the Laplace transforms is applied. The effect of the order of the fractional derivative on the temperature distribution is investigated.
Źródło:
Journal of Applied Mathematics and Computational Mechanics; 2021, 20, 4; 87--98
2299-9965
Pojawia się w:
Journal of Applied Mathematics and Computational Mechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A new numerical technique for solving fractional Bratu’s initial value problems in the Caputo and Caputo-Fabrizio sense
Autorzy:
Khalouta, Ali
Kadem, Abdelouahab
Powiązania:
https://bibliotekanauki.pl/articles/1839797.pdf
Data publikacji:
2020
Wydawca:
Politechnika Częstochowska. Wydawnictwo Politechniki Częstochowskiej
Tematy:
fractional Bratu’s initial value problem
Caputo fractional derivative
Caputo-Fabrizio fractional derivative
natural transform method
Adomian decomposition method
ułamkowa pochodna Caputo
ułamkowa pochodna Caputo-Fabrizio
metoda transformacji naturalnej
metoda dekompozycji Adomiana
Opis:
The purpose of this paper is to propose a new numerical technique called the natural decomposition method (NDM) for solving fractional Bratu’s initial value problems (FBIVP) in the Caputo and Caputo-Fabrizio sense. The NDM is a combined form of the natural transform method and the Adomian decomposition method. The numerical example is provided in order to validate the efficiency and reliability of the proposed method. The obtained results reveal that the proposed method is a very efficient and simple tool for solving fractional differential equations.
Źródło:
Journal of Applied Mathematics and Computational Mechanics; 2020, 19, 1; 43-56
2299-9965
Pojawia się w:
Journal of Applied Mathematics and Computational Mechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A new numerical technique for solving fractional Bratu’s initial value problems in the Caputo and Caputo-Fabrizio sense
Autorzy:
Khalouta, Ali
Kadem, Abdelouahab
Powiązania:
https://bibliotekanauki.pl/articles/122619.pdf
Data publikacji:
2020
Wydawca:
Politechnika Częstochowska. Wydawnictwo Politechniki Częstochowskiej
Tematy:
fractional Bratu’s initial value problem
Caputo fractional derivative
Caputo-Fabrizio fractional derivative
natural transform method
Adomian decomposition method
ułamkowa pochodna Caputo
ułamkowa pochodna Caputo-Fabrizio
metoda transformacji naturalnej
metoda dekompozycji Adomiana
Opis:
The purpose of this paper is to propose a new numerical technique called the natural decomposition method (NDM) for solving fractional Bratu’s initial value problems (FBIVP) in the Caputo and Caputo-Fabrizio sense. The NDM is a combined form of the natural transform method and the Adomian decomposition method. The numerical example is provided in order to validate the efficiency and reliability of the proposed method. The obtained results reveal that the proposed method is a very efficient and simple tool for solving fractional differential equations.
Źródło:
Journal of Applied Mathematics and Computational Mechanics; 2020, 19, 1; 43-56
2299-9965
Pojawia się w:
Journal of Applied Mathematics and Computational Mechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Some closed form series solutions for the time-fractional diffusion-wave equation in polar coordinates with a generalized Caputo fractional derivative
Autorzy:
Elkott, Ibrahim
Abdel-Latif, Mohamed S.
El-Kalla, Ibrahim L.
Abdel Kader, Abass H.
Powiązania:
https://bibliotekanauki.pl/articles/24201502.pdf
Data publikacji:
2023
Wydawca:
Politechnika Częstochowska. Wydawnictwo Politechniki Częstochowskiej
Tematy:
generalized time-fractional Caputo derivative
generalized Laplace transform
Hankel transform
diffusion-wave equation
uogólniona ułamkowa pochodna Caputo w czasie
uogólniona transformata Laplace'a
transformata Hankela
równanie fali dyfuzyjnej
Opis:
In this paper, we obtain some closed form series solutions for the time fractional diffusion-wave equation (TFDWE) with the generalized time-fractional Caputo derivative (GTFCD) associated with a source term in polar coordinates. These solutions are found using generalized Laplace and Hankel transforms. We obtained the closed form series solutions in the form of the Polygamma function. The effect of the fractional order derivative on the diffusion-wave variable is illustrated graphically.
Źródło:
Journal of Applied Mathematics and Computational Mechanics; 2023, 22, 2; 5--14
2299-9965
Pojawia się w:
Journal of Applied Mathematics and Computational Mechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Application of LDG scheme to solve semi-differential equations
Autorzy:
Izadi, Mohammad
Powiązania:
https://bibliotekanauki.pl/articles/122346.pdf
Data publikacji:
2019
Wydawca:
Politechnika Częstochowska. Wydawnictwo Politechniki Częstochowskiej
Tematy:
Caputo fractional derivative
local discontinuous Galerkin method
semi-differential equations
pochodna ułamkowa Caputo
nieciągła metoda Galerkina
schemat LDG
równania różnicowe
Opis:
In the current work, we investigate a technique based on discontinuous Galerkin method for the numerical approximation of semi-differential equations with Caputo’s fractional derivative. In this approach, using the natural upwind fluxes enables us to solve the model problem element by element locally in each subintervals and there is no need to solve a full global matrix. Numerical experiments are given to verify the efficiency and accuracy of the proposed method. Numerical solutions are compared with the exact solutions as well as the numerical solutions obtained by other available well-established computational procedures. The results show that the LDG method is more accurate for solving this class of differential equation with relatively low degrees of polynomials and number of elements.
Źródło:
Journal of Applied Mathematics and Computational Mechanics; 2019, 18, 4; 27-39
2299-9965
Pojawia się w:
Journal of Applied Mathematics and Computational Mechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The Dirichlet problem for the time-fractional advection-diffusion equation in a half-space
Autorzy:
Povstenko, Y.
Klekot, J.
Powiązania:
https://bibliotekanauki.pl/articles/122941.pdf
Data publikacji:
2015
Wydawca:
Politechnika Częstochowska. Wydawnictwo Politechniki Częstochowskiej
Tematy:
Caputo fractional derivative
advection-diffusion equation
Laplace integral transform
Fourier sine transform
Mittag-Leffler function
pochodna rzędu ułamkowego Caputo
funkcja Mittag-Lefflera
Opis:
The one-dimensional time-fractional advection-diffusion equation with the Caputo time derivative is considered in a half-space. The fundamental solution to the Dirichlet problem and the solution of the problem with constant boundary condition are obtained using the integral transform technique. The numerical results are illustrated graphically.
Źródło:
Journal of Applied Mathematics and Computational Mechanics; 2015, 14, 2; 73-83
2299-9965
Pojawia się w:
Journal of Applied Mathematics and Computational Mechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The Generalized Differential Transform Method for solution of a free vibration linear differential equation with fractional derivative damping
Autorzy:
Das, Deepanjan
Powiązania:
https://bibliotekanauki.pl/articles/122961.pdf
Data publikacji:
2019
Wydawca:
Politechnika Częstochowska. Wydawnictwo Politechniki Częstochowskiej
Tematy:
fractional differential equations
Caputo fractional derivative
generalized
differential transform method
analytic solution
ułamkowe równania różniczkowe
ułamkowa pochodna Caputo
metoda transformacji różnicowej
rozwiązanie analityczne
ułamkowe równanie różniczkowe
Opis:
In the present paper, the Generalized Differential Transform Method (GDTM) is used for obtaining the approximate analytic solutions of a free vibration linear differential equation of a single-degree-of-freedom (SDOF) system with fractional derivative damping. The fractional derivatives are described in the Caputo sense.
Źródło:
Journal of Applied Mathematics and Computational Mechanics; 2019, 18, 2; 19-29
2299-9965
Pojawia się w:
Journal of Applied Mathematics and Computational Mechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A new modification of the reduced differential transform method for nonlinear fractional partial differential equations
Autorzy:
Khalouta, Ali
Kadem, Abdelouahab
Powiązania:
https://bibliotekanauki.pl/articles/1839758.pdf
Data publikacji:
2020
Wydawca:
Politechnika Częstochowska. Wydawnictwo Politechniki Częstochowskiej
Tematy:
nonlinear fractional partial differential equations
Caputo fractional derivative
Shehu transform method
reduced differential transform method
approximate analytical solution
nieliniowe równania różniczkowe cząstkowe ułamkowe
pochodna ułamkowa Caputo
metoda transformacji Shehu
metoda transformacji różnicowej
Opis:
The objective of this study is to present a new modification of the reduced differential transform method (MRDTM) to find an approximate analytical solution of a certain class of nonlinear fractional partial differential equations in particular, nonlinear time-fractional wave-like equations with variable coefficients. This method is a combination of two different methods: the Shehu transform method and the reduced differential transform method. The advantage of the MRDTM is to find the solution without discretization, linearization or restrictive assumptions. Three different examples are presented to demonstrate the applicability and effectiveness of the MRDTM. The numerical results show that the proposed modification is very effective and simple for solving nonlinear fractional partial differential equations.
Źródło:
Journal of Applied Mathematics and Computational Mechanics; 2020, 19, 3; 45-58
2299-9965
Pojawia się w:
Journal of Applied Mathematics and Computational Mechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Numerical solution of a fractional coupled system with the Caputo-Fabrizio fractional derivative
Autorzy:
Mansouri, Ikram
Bekkouche, Mohammed Moumen
Ahmed, Abdelaziz Azeb
Powiązania:
https://bibliotekanauki.pl/articles/2202061.pdf
Data publikacji:
2023
Wydawca:
Politechnika Częstochowska. Wydawnictwo Politechniki Częstochowskiej
Tematy:
Caputo-Fabrizio fractional derivative
fractional integral
coupled system
fractional differential equation
fixed point
Adomian decomposition method
pochodna ułamkowa Caputo-Fabrizio
całkowanie ułamkowe
system sprzężony
ułamkowe równanie różniczkowe
punkt stały
metoda dekompozycji Adomiana
Opis:
Within this work, we discuss the existence of solutions for a coupled system of linear fractional differential equations involving Caputo-Fabrizio fractional orders. We prove the existence and uniqueness of the solution by using the Picard-Lindel ̈of method and fixed point theory. Also, to compute an approximate solution of problem, we utilize the Adomian decomposition method (ADM), as this method provides the solution in the form of a series such that the infinite series converge to the exact solution. Numerical examples are presented to illustrate the validity and effectiveness of the proposed method.
Źródło:
Journal of Applied Mathematics and Computational Mechanics; 2023, 22, 1; 46--56
2299-9965
Pojawia się w:
Journal of Applied Mathematics and Computational Mechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The fundamental solutions to the central symmetric time-fractional heat conduction equation with heat absorption
Autorzy:
Povstenko, Y.
Klekot, J.
Powiązania:
https://bibliotekanauki.pl/articles/122778.pdf
Data publikacji:
2017
Wydawca:
Politechnika Częstochowska. Wydawnictwo Politechniki Częstochowskiej
Tematy:
non-Fourier heat conduction
Caputo fractional derivative
heat absorption
Laplace integral transform
Fourier transform
Mittag-Leffler function
przewodzenie ciepła
pochodna ułamkowa Caputo
absorpcja ciepła
transformata Laplace'a
transformata Fouriera
funkcja Mittag-Lefflera
Opis:
The time-fractional heat conduction equation with heat absorption proportional to temperature is considered in the case of central symmetry. The fundamental solutions to the Cauchy problem and to the source problem are obtained using the integral transform technique. The numerical results are presented graphically.
Źródło:
Journal of Applied Mathematics and Computational Mechanics; 2017, 16, 2; 101-112
2299-9965
Pojawia się w:
Journal of Applied Mathematics and Computational Mechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analytical and numerical study for a fractional boundary value problem with a conformable fractional derivative of Caputo and its fractional integral
Autorzy:
Bekkouche, M. Moumen
Guebbai, H.
Powiązania:
https://bibliotekanauki.pl/articles/1839786.pdf
Data publikacji:
2020
Wydawca:
Politechnika Częstochowska. Wydawnictwo Politechniki Częstochowskiej
Tematy:
fractional boundary value problem
Volterra-Fredholm integral equation
fractional derivative
fractional integral
równanie całkowe Volterry-Fredholma
ułamkowa wartość brzegowa
pochodna ułamkowa Caputo
Opis:
We study the existence and uniqueness of the solution of a fractional boundary value problem with conformable fractional derivation of the Caputo type, which increases the interest of this study. In order to study this problem we have introduced a new definition of fractional integral as an inverse of the conformable fractional derivative of Caputo, therefore, the proofs are based upon the reduction of the problem to a equivalent linear Volterra-Fredholm integral equations of the second kind, and we have built the minimum conditions to obtain the existence and uniqueness of this solution. The analytical study is followed by a complete numerical study.
Źródło:
Journal of Applied Mathematics and Computational Mechanics; 2020, 19, 2; 31-42
2299-9965
Pojawia się w:
Journal of Applied Mathematics and Computational Mechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Existence and Ulam-Hyers stability of the implicit fractional boundary value problem with ψ-Caputo fractional derivative
Autorzy:
Wahash, Hanan A.
Abdo, Mohammed S
Panchal, Satish K.
Powiązania:
https://bibliotekanauki.pl/articles/122800.pdf
Data publikacji:
2020
Wydawca:
Politechnika Częstochowska. Wydawnictwo Politechniki Częstochowskiej
Tematy:
fractional differential equations
ψ-fractional integral and derivative
existence and Ulam-Hyers stability
fixed point theorem
równania różniczkowe ułamkowe
równania różniczkowe cząstkowe
pochodna ułamkowa
twierdzenie o punkcie stałym
pochodna ułamkowa Caputo
Opis:
In this paper, we investigate the existence, uniqueness and Ulam-Hyers stability of solutions for nonlinear implicit fractional differential equations with boundary conditions involving a ψ-Caputo fractional derivative. The obtained results for the proposed problem are proved under a new approach and minimal assumptions on the function ƒ . The analysis is based upon the reduction of the problem considered to the equivalent integral equation, while some fixed point theorems of Banach and Schauder and generalized Gronwall inequality are employed to obtain our results for the problem at hand. Finally, the investigation is illustrated by providing a suitable example.
Źródło:
Journal of Applied Mathematics and Computational Mechanics; 2020, 19, 1; 89-101
2299-9965
Pojawia się w:
Journal of Applied Mathematics and Computational Mechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Existence and Ulam-Hyers stability of the implicit fractional boundary value problem with ψ-Caputo fractional derivative
Autorzy:
Wahash, Hanan A.
Abdo, Mohammed S
Panchal, Satish K.
Powiązania:
https://bibliotekanauki.pl/articles/1839794.pdf
Data publikacji:
2020
Wydawca:
Politechnika Częstochowska. Wydawnictwo Politechniki Częstochowskiej
Tematy:
fractional differential equations
ψ-fractional integral and derivative
existence and Ulam-Hyers stability
fixed point theorem
równania różniczkowe ułamkowe
równania różniczkowe cząstkowe
pochodna ułamkowa
twierdzenie o punkcie stałym
pochodna ułamkowa Caputo
Opis:
In this paper, we investigate the existence, uniqueness and Ulam-Hyers stability of solutions for nonlinear implicit fractional differential equations with boundary conditions involving a ψ-Caputo fractional derivative. The obtained results for the proposed problem are proved under a new approach and minimal assumptions on the function ƒ. The analysis is based upon the reduction of the problem considered to the equivalent integral equation, while some fixed point theorems of Banach and Schauder and generalized Gronwall inequality are employed to obtain our results for the problem at hand. Finally, the investigation is illustrated by providing a suitable example.
Źródło:
Journal of Applied Mathematics and Computational Mechanics; 2020, 19, 1; 89-101
2299-9965
Pojawia się w:
Journal of Applied Mathematics and Computational Mechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-13 z 13

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies