Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Bodzek, M." wg kryterium: Wszystkie pola


Wyświetlanie 1-4 z 4
Tytuł:
Przegląd możliwości wykorzystania technik membranowych w usuwaniu mikroorganizmów i zanieczyszczeń organicznych ze środowiska wodnego
An overview of the possibility of membrane techniques application in the removal of microorganisms and organic pollutants from the aquatic environment
Autorzy:
Bodzek, M
Powiązania:
https://bibliotekanauki.pl/articles/296807.pdf
Data publikacji:
2013
Wydawca:
Politechnika Częstochowska. Wydawnictwo Politechniki Częstochowskiej
Tematy:
ciśnieniowe techniki membranowe
mikroorganizmy
uboczne produkty dezynfekcji
substancje endokrynnie aktywne
pozostałości po farmaceutykach
pressure driven membrane processes
microorganisms
disinfection by-products
endocrine disrupting compounds
pharmaceutical active compounds
Opis:
Ultrafiltracja (UF) i mikrofiltracja (MF) mogą wspomóc i polepszyć proces dezynfekcji wody i ścieków metodami tradycyjnymi, ponieważ membrana stanowi barierę dla wirusów, bakterii i pierwotniaków. Do mikrozanieczyszczeń organicznych, występujących w wodach i ściekach, należy zaliczyć uboczne produkty dezynfekcji i utleniania chemicznego. Ich prekursorami są naturalne substancje organiczne (NOM), których usuwanie jest jedną z najważniejszych operacji w technologii uzdatniania i oczyszczania wody. Chlorowanie, stosowane w uzdatnianiu wody, powoduje tworzenie się związków halogenoorganicznych, w tym głównie trihalometanów i kwasów halogenooctowych. Poprzez wprowadzenie ciśnieniowych technik membranowych do uzdatniania wody można usuwać NOM i kontrolować powstawanie ubocznych produktów dezynfekcji. Stosuje się albo bezpośrednio nanofiltrację/odwróconą osmozę, albo systemy zintegrowane, stanowiące połączenie UF lub MF z koagulacją i adsorpcją na węglu aktywnym. Antropogeniczne mikrozanieczyszczenia organiczne to przede wszystkim substancje endokrynnie aktywne (EDC) oraz pozostałości farmaceutyków. Do EDC zalicza się szeroką gamę mikrozanieczyszczeń, przede wszystkim: halogenowe związki organiczne, w tym dioksyny, furany, polichlorowane bifenyle oraz pestycydy, wielopierścieniowe węglowodory aromatyczne, substancje powierzchniowo czynne, alkilofenole, ftalany, hormony naturalne i syntetyczne oraz syntetyczne farmaceutyki. Ciśnieniowe procesy membranowe stanowią skuteczną metodę usuwania rozpuszczalnych w wodzie związków organicznych w uzdatnianiu wód naturalnych. Wyższy stopień usunięcia, a w wielu przypadkach całkowite usunięcie farmaceutyków i EDC poniżej poziomu wykrywalności osiąga się w procesach nanofiltracji/odwróconej osmozy. Do ich usuwania można też stosować systemy zintegrowane, łączące UF lub MF z koagulacją, adsorpcją na węglu aktywnym czy utlenieniem. W przypadku ścieków ważną rolę mogą odegrać bioreaktory membranowe.
Drinking water containing biologically active substances, i.e. viruses, bacteria and protozoa, as well as other microorganisms, is a significant health threat. This also applies to the treated and the raw wastewaters discharged into the receiver. Ultrafiltration and microfiltration can help and improve the process of water disinfecting using traditional methods, because membrane is a barrier for microorganisms. Viruses can be retained by ultrafiltration membranes, whereas bacteria and protozoa using ultrafiltration and microfiltration membranes. For the removal of natural organic matter it is possible to use successfully either direct nanofiltration or integrated systems combining ultrafiltration or microfiltration with coagulation, adsorption on activated carbon, and even with oxidation. Natural organic matter and some other anthropogenic organic pollutants can be precursors of disinfection by-products, and that is why NOM removal from water is very important. Nanofiltration and to some extent reverse osmosis are the methods for the removal of the micro-pollutants from water and wastewaters, among them the most important are disinfection by-products, pharmaceutical active compounds and endocrine disrupting compounds which have high biological activity. In the first case, volatile trihalomethanes, and non-volatile compounds, mainly halogenacetic acids, are formed. To this last group of compounds, special attention in natural waters is paid onto polycyclic aromatic hydrocarbons and surface-active substances, chlorinated pesticides, phthalates, alkylphenols, polychlorinated biphenyls, hormones, synthetic pharmaceuticals and other chemicals and substances produced by man and put into the environment. Application of microfiltration and ultrafiltration in micro-pollutants removal is possible in integrated systems: with coagulation and adsorption processes, through polymer complexation and surfactant bounding. Also membrane bioreactors are useful in the removal of organic pollutants. The problems in operation of low-pressure-driven membrane processes is membrane fouling, responsible for continuous decrease of membrane flux and permeate quality in time.
Źródło:
Inżynieria i Ochrona Środowiska; 2013, 16, 1; 5-37
1505-3695
2391-7253
Pojawia się w:
Inżynieria i Ochrona Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Fluorki w środowisku wodnym – zagrożenia i metody usuwania
Fluorine in the water environment - hazards and removal methods
Autorzy:
Bodzek, M.
Konieczny, K.
Powiązania:
https://bibliotekanauki.pl/articles/297154.pdf
Data publikacji:
2018
Wydawca:
Politechnika Częstochowska. Wydawnictwo Politechniki Częstochowskiej
Tematy:
water treatment
fluoride removal
coagulation
precipitation
adsorption
membrane processes
uzdatnianie wody
usuwanie fluorków
koagulacja
wytrącanie
adsorpcja
procesy membranowe
Opis:
High fluorine concentrations in aquatic environment, even above 30 mg/L, are often detected in many parts of the world. Due to fluorine effects on health, World Health Organization (WHO) as well as national health authorities have established its maximum permissible concentration in drinking water at the level of 1.5 mg/L. This review article aims to provide detail information on researchers’ efforts in the field of fluorides removal during potable water production. The contaminant elimination methods have been broadly divided in three sections, i.e. coagulation/precipitation, adsorption and membrane techniques. Both, precipitation with the use of calcium salts or coagulation with aluminum sulphate and ferric salts followed by sedimentation are used for fluorine removal. In electrocoagulation, a coagulant is generated in situ by means of oxidation of anode usually made of aluminum or iron. The removal of fluorides from water and wastewater can be performed with the use of many different types of adsorbents, which are either applied already at industrial scale or still tested in the laboratory or pilot scale. The adsorption on activated aluminum oxide is already a common technology of fluorine removal from water and wastewater, and it is also indicated as the one of the best available technique (BAT) in this field. However, the adsorbent price is relatively high, while its efficiency mostly depends on pH and co-ions presence. Recently, a lot of effort has been devoted to develop an effective method of aluminum oxide modification with the use of metals’ oxides impregnation, which reveal significant defluoridation efficiency. The applicability of carbon based sorbents is less efficient than of aluminum compounds, hence a number of studies on modification of carbon based materials towards defluoridation improvement are carried out. The special attention is dedicated to carbon nanotubes. Among many natural materials, which are usable to fluorine adsorption, many different types of clays and minerals have been tested. Biosorbents, especially modified chitosan, also offer promising results in fluorine removal process. Additionally, a group of waste materials, which contain metal oxides, have also been examined to fluorides concentration decrease in contaminated aqueous streams, and those can be considered as alternative cheap sorbents. Synthetic layered double hydroxides (LDHs), hydrocalcite like compounds and nanosorbents have also gained a lot of attention as potential fluorine adsorbent, as they reveal high affinity toward the contaminant. Among membrane techniques reverse osmosis, nanofiltration, ultrafiltration in integrated systems, electrodialysis and Donnan dialysis have been discussed. The most important benefits offered by membrane processes are very high removal efficiency (up to 98%), single stage treatment, simultaneous water disinfection and low requirement for additional chemicals. However, the removal of other anions present in treated water is a serious disadvantage of those techniques, as it results in the need of water remineralization to assure the proper quality of finally produced potable water. Additionally, membrane processes are quite expensive due to relatively high initial concentrated solution containing fluorine may become a significant problem.
Występowanie fluorków (F-) w wodach naturalnych jest związane z ich obecnością w skorupie ziemskiej, jak również aktywnością przemysłową człowieka. O ile obecność jonów F- w wodzie do picia w ilości 0,5÷0,7 mg/l zabezpiecza przed próchnicą zębów, o tyle ich nadmiar jest uważany za poważny problem zdrowotny. Regularne spożywanie wysoce fluorowanej wody, zawierającej 1,5÷4 mg F/l, wywołuje wiele chorób związanych z tkanką kostną (fluoroza, artretyzm i osteoporoza), chorobę Alzheimera, utratę pamięci i inne neurologiczne dolegliwości. Według World Health Organization, a także polskich przepisów, maksymalne stężenie fluorków w wodzie do picia nie może przekraczać 1,5 mg/l, a rekomendowany jest zakres 0,5÷1 mg/l. Opracowano szereg metod usuwania fluorków, które można podzielić na trzy grupy procesów: koagulacja i wytrącanie, membranowe techniki separacji oraz adsorpcja/wymiana jonowa.
Źródło:
Inżynieria i Ochrona Środowiska; 2018, 21, 2; 113-141
1505-3695
2391-7253
Pojawia się w:
Inżynieria i Ochrona Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Fouling membran półprzepuszczalnych podczas oczyszczania wody metodą ultra- i mikrofiltracji - przegląd piśmiennictwa
The fouling of semi-permeable membranes during water treatment by use of UF/MF proces - review
Autorzy:
Bodzek, M.
Płatkowska, A.
Powiązania:
https://bibliotekanauki.pl/articles/296721.pdf
Data publikacji:
2009
Wydawca:
Politechnika Częstochowska. Wydawnictwo Politechniki Częstochowskiej
Tematy:
NOM
fouling
membrany
HPSEC
SEM/AFM
FTIR
koagulacja
PAC
membranes
coagulation
Opis:
Procesom membranowym uzdatniania wody i oczyszczania ścieków towarzyszy nieodłącznie zjawisko zmniejszania wydajności i żywotności membran zwane foulingiem. Pierwszym krokiem do ograniczenia foulingu jest poznanie natury tego zjawiska. Pozwalają na to dostępne techniki analityczne, takie jak: SEM, AFM, FTIR, HPSEC, analiza OWO, ASA, pomiar kąta zwilżenia oraz potencjału elektrokinetycznego membran czy też frakcjonowanie na żywicach XAD8/4. Stopień foulingu powodowanego przez NOM uzależniony jest m.in. od siły jonowej oraz pH. Zależy on w dużej mierze od właściwości filtrowanej wody, w tym hydrofilowości/hydrofobowości jej składników. Duża część badaczy obarcza frakcję hydrofobową odpowiedzialnością za fouling. Dla procesów niskociśnieniowych zaobserwowano wpływ rozmiaru cząstek filtrowanej frakcji (im mniejsze, tym większy obserwowany spadek strumienia oraz opór filtracji) na zjawisko foulingu. Zidentyfikowano 4 kategorie NOM, które uważane są za silne foulanty, a mianowicie białka, aminocukry, polisacharydy i związki poli(hydroksy-aromatyczne). Znaczenia ma również rodzaj membrany. W zdecydowanej większości prac zaobserwowano większą tendencję do foulingu w przypadku membran hydrofobowych niż hydrofilowych, co tłumaczono adsorpcją ujemnie naładowanych grup funkcyjnych NOM na dodatnio naładowanych powierzchniach membrany. Obecnie stosowane są różne procesy wstępnego przygotowania nadawy, mające na celu zwiększenie jakości wody i/lub wydajności membran. Koagulacja oraz adsorpcja na węglu aktywnym są polecane przy minimalizacji foulingu związanego z dużymi stężeniami poli(hydroksy-aromatów), proces utlenienia natomiast jest zalecany do zmniejszania foulingu powodowanego polisacharydami.
During membrane water and wastewater processes reduction of capacity and membranes lifetime can be observed. Those phenomena are caused by membrane fouling. To limit the influence of fouling on the efficiency of membrane processes detailed recognition of its nature is required. This can be done using available analytical technologies like: electron microscopy (SEM, AFM), infrared spectroscopy (FTIR), high performance size exclusion chromatography (HPSEC), TOC analysis, atomic absorption spectroscopy (AAS), measurement of contact angle and zeta potential or fractionation on XAD8/4 resins. The influence of fouling caused by NOM mainly depends on ionic strength and pH, but also on properties of filtrated water, including hydophobicity/hydrophilicity of its components. Resent scientific reports suggest that the hydrophobic water fraction has a significant impact on fouling. Size of molecules of filtrated fraction is responsible for fouling occurring fouling during low-pressure membrane processes (the smallest size of molecules the highest flux decline). 4 categories of NOM, which are considered to be strong foulants, were identified. They include: proteins, aminosugars, polysaccharides and poly(hydroxy-aromatics). The membrane composing material also has a meaning. Hydrophobic membranes seem to have greater ability to fouling than hydrophilic ones. It can be explained by the fact, that the positively charged membrane surface tends to adsorb negatively charged functional groups of NOM. Nowadays different water pretreatment processes are applied. Their aim is to improve water quality and/or membrane capacity. Fouling caused by poly(hydroxyl-amines) can be minimized by coagulation or adsorption on activated carbon, while oxidation reduces the fouling induced by polysacharides.
Źródło:
Inżynieria i Ochrona Środowiska; 2009, 12, 1; 5-24
1505-3695
2391-7253
Pojawia się w:
Inżynieria i Ochrona Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Usuwanie kwasów fulwowych z wody metodami fotokatalicznymi wspomaganymi ultrafiltracją
Removal of fulvic acids from water by means of photocatalytic methods enhanced by ultrafiltration
Autorzy:
Rajca, M
Bodzek, M.
Powiązania:
https://bibliotekanauki.pl/articles/296964.pdf
Data publikacji:
2011
Wydawca:
Politechnika Częstochowska. Wydawnictwo Politechniki Częstochowskiej
Tematy:
kwasy fulwowe
fotoliza
kataliza
fotokataliza
oczyszczanie wody
ultrafiltracja
fulvic acids
photolysis
catalysis
photocatalysis
water treatment
ultrafiltration
Opis:
Przedstawiono wyniki badań usunięcia kwasów fulwowych (KF) z wody w procesie fotolizy, katalizy i fotokatalizy oraz w procesach zintegrowanych fotolizy-ultrafiltracji, fotokatalizy-ultrafiltracji. Badania prowadzone były w reaktorze HERAEUS, w którym oczyszczano wodę modelową, zawierającą kwasy fulwowe o stężeniu ok. 10 mg/l. Jako fotokatalizator stosowano ditlenek tytanu TiO2 niemieckiej firmy Degussa. Badano wpływ pH na efektywność procesu fotolizy, katalizy, fotokatalizy, a ponadto dawki katalizatora na efektywność procesu fotokatalizy. Efektywność procesów określano przez pomiary rozpuszczalnego węgla organicznego (RWO), absorbancji przy długości fali 254 nm oraz barwy w wodzie surowej i oczyszczonej. Wyższe efektywności otrzymane dla fotokatalizy w porównaniu z fotolizą i katalizą świadczą o tym, że połączenie promieniowania UV z dodawaniem TiO2 jest o wiele skuteczniejsze w usuwaniu KF i pozwala na skrócenie czasu naświetlania. Uzasadnione jest również prowadzenie procesu integrowanego fotokataliza-ultrafiltracja z uwagi na możliwość recyrkulacji katalizatora i ewentualne usuwanie zanieczyszczeń nierozłożonych lub powstających w procesie fotokatalizy.
The paper presents the results of fulvic acids removal (FA) from water using photolysis, catalysis, photocatalysis processes and integrated processes photolysis-ultrafiltration and photocatalysis-ultrafiltration. Experiments were carried out at constant temperature in the HERAEUS reactor, in which model water containing 10 mg/L of FA was treated. Titanium dioxide (TiO2) from Degussa (Germany) was used as a photocatalyst. Effect of pH on the efficiency of the photolysis, catalysis, photocatalysis and additionally the dose of catalyst for photocatalysis, has been studied. The efficiency of the process was established by measurement of dissolved organic carbon (DOC), absorbance at 254 nm and colour in raw water and treated water. The higher efficiency obtained for photocatalysis compared with photolysis and catalysis, indicates that the combination of UV with TiO2 allows for shortening the exposure time and obtaining higher removal degree of FA. Integration of photocatalysis with ultrafiltration is also justified, because the possibility to recycle the activated catalyst and additional removal of the impurities not removed or generated in the photocatalyse process.
Źródło:
Inżynieria i Ochrona Środowiska; 2011, 14, 2; 101-110
1505-3695
2391-7253
Pojawia się w:
Inżynieria i Ochrona Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies