Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Laplace Decomposition Method" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Approximate solution of painlevé equation i by natural decomposition method and laplace decomposition method
Autorzy:
Amir, Muhammad
Haider, Jamil Abbase
Ahmad, Shahbaz
Ashraf, Asifa
Gul, Sana
Powiązania:
https://bibliotekanauki.pl/articles/2233067.pdf
Data publikacji:
2023
Wydawca:
Politechnika Białostocka. Oficyna Wydawnicza Politechniki Białostockiej
Tematy:
natural decomposition method
Laplace decomposition method
series solution
Adomain polynomial
Painlevéequation
Opis:
The Painlevé equations and their solutions occur in some areas of theoretical physics, pure and applied mathematics. This paper applies natural decomposition method (NDM) and Laplace decomposition method (LDM) to solve the second-order Painlevé equation. These methods are based on the Adomain polynomial to find the non-linear term in the differential equation. The approximate solution of Painlevé equations is determined in the series form, and recursive relation is used to calculate the remaining components. The results are compared with the existing numerical solutions in the literature to demonstrate the efficiency and validity of the proposed methods. Using these methods, we can properly handle a class of non-linear partial differential equations (NLPDEs) simply. Novelty: One of the key novelties of the Painlevé equations is their remarkable property of having only movable singularities, which means that their solutions do not have any singularities that are fixed in position. This property makes the Painlevé equations particularly useful in the study of non-linear systems, as it allows for the construction of exact solutions in certain cases. Another important feature of the Painlevé equations is their appearance in diverse fields such as statistical mechanics, random matrix theory and soliton theory. This has led to a wide range of applications, including the study of random processes, the dynamics of fluids and the behaviour of non-linear waves.
Źródło:
Acta Mechanica et Automatica; 2023, 17, 3; 417--422
1898-4088
2300-5319
Pojawia się w:
Acta Mechanica et Automatica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Solution of the modified time fractional coupled burgers equations using laplace adomian decompostion method
Autorzy:
Omame, Andrew
Zaman, Fiazud Din
Powiązania:
https://bibliotekanauki.pl/articles/2204660.pdf
Data publikacji:
2023
Wydawca:
Politechnika Białostocka. Oficyna Wydawnicza Politechniki Białostockiej
Tematy:
Burgers equations
fractional derivatives
Laplace Adomian decomposition method
semi-analytic solutions
simulations
Opis:
In this work, a coupled system of time-fractional modified Burgers’ equations is considered. Three different fractional operators: Caputo, Caputo-Fabrizio and Atangana-Baleanu operators are implemented for the equations. Also, two different scenarios are examined for each fractional operator: when the initial conditions are u(x,y,0) = sin(xy), v(x,y,0) = sin(xy), and when they are u(x,y,0) = e{−kxy}, v(x,y,0) = e{−kxy}, where k,α are some positive constants. With the aid of computable Adomian polynomials, the solutions are obtained using Laplace Adomian decomposition method (LADM). The method does not need linearization, weak nonlinearity assumptions or perturbation theory. Simulations are also presented to support theoretical results, and the behaviour of the solutions under the three different fractional operators compared.
Źródło:
Acta Mechanica et Automatica; 2023, 17, 1; 124--132
1898-4088
2300-5319
Pojawia się w:
Acta Mechanica et Automatica
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies