- Tytuł:
-
Learning finite Gaussian mixtures using differential evolution
Uczenie skończonych mieszanin rozkładów normalnych przy pomocy algorytmu ewolucji różnicowej - Autorzy:
- Kwedlo, W.
- Powiązania:
- https://bibliotekanauki.pl/articles/341041.pdf
- Data publikacji:
- 2010
- Wydawca:
- Politechnika Białostocka. Oficyna Wydawnicza Politechniki Białostockiej
- Tematy:
-
mieszaniny rozkładów normalnych
ewolucja różnicowa
algorytm EM
Gaussian mixtures
differential evolution
EM algorithm - Opis:
-
In the paper the problem of parameter estimation of finite mixture of multivariate Gaussian distributions is considered. A new approach based on differential evolution (DE) algorithm is proposed. In order to avoid problems with infeasibility of chromosomes our version of DE uses a novel representation, in which covariance matrices are encoded using their Cholesky decomposition. Numerical experiments involved three version of DE differing by the method of selection of strategy parameters. The results of experiments, performed on two synthetic and one real dataset indicate, that our method is able to correctly identify the parameters of the mixture model. The method is also able to obtain better solutions than the classical EM algorithm. Keywords: Gaussian mixtures, differential evolution, EM algorithm.
W artykule rozważono problem uczenia parametrów skończonej mieszaniny wielowymiarowych rozkładów normalnych. Zaproponowano nową metodę uczenia opartą na algorytmie ewolucji różnicowej. W celu uniknięcia problemów z niedopuszczalnością chromosomów algorytm ewolucji różnicowej wykorzystuje nową reprezentację, w której macierze kowariancji są reprezentowane przy pomocy dekompozycji Cholesky’ego. W eksperymentach wykorzystano trzy wersje algorytmu ewolucji różnicowej różniące się metodą˛ doboru parametrów. Wyniki eksperymentów, przeprowadzonych na dwóch syntetycznych i jednym rzeczywistym zbiorze danych, wskazują że zaproponowana metoda jest w stanie poprawnie identyfikować parametry modelu. Metoda ta osiąga również lepsze wyniki niż klasyczyny algorytm EM. - Źródło:
-
Zeszyty Naukowe Politechniki Białostockiej. Informatyka; 2010, 5; 19-33
1644-0331 - Pojawia się w:
- Zeszyty Naukowe Politechniki Białostockiej. Informatyka
- Dostawca treści:
- Biblioteka Nauki