Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "sieci Bayesowskie" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Sieci bayesowskie jako narzędzie wspomagające proces podejmowania decyzji
Bayesian networks as a tool for supporting decision making
Autorzy:
Król, A.
Powiązania:
https://bibliotekanauki.pl/articles/325273.pdf
Data publikacji:
2014
Wydawca:
Politechnika Śląska. Wydawnictwo Politechniki Śląskiej
Tematy:
systemy decyzyjne
sieci bayesowskie
wartość informacji
decision systems
Bayesian networks
value of information
Opis:
W trakcie podejmowania decyzji często istnieje konieczność wykorzystania informacji, które są niepewne lub niekompletne. Wśród wielu narzędzi formalnych wspomagających proces podejmowania decyzji godne uwagi wydają się sieci bayesowskie (przekonaniowe). Ich nazwa pochodzi od zajmującego ważne miejsce w rachunku prawdopodobieństwa i statystyce twierdzenia Bayesa, które postuluje rewizję wcześniejszych przekonań w świetle nowych faktów. Wiedza dziedzinowa jest tu zakodowana w postaci grafu, którego topologia naśladuje przyczynową strukturę dziedziny.
When decision making there is often a need to use information that is uncertain or incomplete. Among many formal tools for supporting decision-making process Bayesian networks (belief) seem to be noteworthy. The name origins from Bayes' theorem, occupying an important place in probability and statistics, which postulates a revision of the earlier beliefs in the light of new facts. The knowledge is here encoded in the form of a graph, which mimics the topology of the causal structure of the domain.
Źródło:
Zeszyty Naukowe. Organizacja i Zarządzanie / Politechnika Śląska; 2014, 71; 209-218
1641-3466
Pojawia się w:
Zeszyty Naukowe. Organizacja i Zarządzanie / Politechnika Śląska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Ochrona przemysłowych systemów sterowania przez analizę ruchu sieciowego
Protection of industrial control systems through analysis of network traffic
Autorzy:
Tylman, W.
Powiązania:
https://bibliotekanauki.pl/articles/326425.pdf
Data publikacji:
2014
Wydawca:
Politechnika Śląska. Wydawnictwo Politechniki Śląskiej
Tematy:
industrial control systems
industrial networks
anomaly detection
Bayesian networks
MEBN networks
przemysłowe systemy sterowania
sieci przemysłowe
wykrywanie anomalii
sieci bayesowskie
sieci MEBN
Opis:
Przedstawiona jest koncepcja wysoce zautomatyzowanego rozwiązania pozwalającego na wykrywanie w przemysłowym ruchu sieciowym sytuacji odbiegających od stanu normalnego (anomalii). Omówione są zastosowania klasycznych sieci bayesowskich i sieci Multi-Entity Bayesian Networks (MEBN) wraz z dyskusją ich stosowalności w praktyce. Prace ilustrują również możliwość wykorzystania istniejącego oprogramowania (na przykładzie systemu Snort) oraz kwestie wymaganych modyfikacji związanych z pracą w sieciach nie-IP.
The paper presents a concept of a highly automated solution allowing detection, in industrial network traffic, of situations differing from the normal state (anomalies). It describes the use of classical Bayesian networks and Multi-Entity Bayesian Networks (MEBN), together with a discussion of their applicability in practice. The work also illustrates the possibility of using existing software (taking Snort system as an example) and the required modifications related to the support for non-IP networks.
Źródło:
Zeszyty Naukowe. Organizacja i Zarządzanie / Politechnika Śląska; 2014, 74; 101-111
1641-3466
Pojawia się w:
Zeszyty Naukowe. Organizacja i Zarządzanie / Politechnika Śląska
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies