Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "neurodegeneracja" wg kryterium: Temat


Wyświetlanie 1-5 z 5
Tytuł:
Chemokiny i ich receptory na neuronach a proces neurodegeneracji i neuroprotekcji
Chemokines and their receptors on neurons in neurodegeneration and neuroprotection
Autorzy:
Woliński, Paweł
Głąbiński, Andrzej
Powiązania:
https://bibliotekanauki.pl/articles/1057930.pdf
Data publikacji:
2011
Wydawca:
Medical Communications
Tematy:
chemokiny
receptory chemokinowe
neurodegeneracja
neuroregeneracja
zapalenie
chemokines
chemokine receptors
neurodegeneration
neuroregeneration
inflammation
Opis:
The first studies on expression of chemokines and their receptors in the central nervous system (CNS) appeared several years ago and since that time many papers were published increasing our knowledge in that field. Recent studies are concentrated mostly on involvement of chemokines and chemokine receptors in neurodegeneration and neuroprotection.There are evidences that chemokines may directly initiate neurodegeneration through activation of their receptors on the surface of neurons or indirectly through activation of microglia which in turn may secrete neurotoxic mediators damaging neuronal cells. There are also evidences suggesting that chemokines and chemokine receptors are also involved in neuroprotection. So far only two chemokines, CX3CL1 (fractalkine) and CXCL12 (SDF-1 – stromal cell-derived factor- 1) have been shown to be expressed constitutively in the CNS. However, expression of many chemokine receptors including CXCR2, CXCR4, CCR1, CCR3, CCR4, CCR5, CCR9/10, CX3CR1 i DARC has been detected on the surface of neuronal cell. Based on presented in this review studies it may be concluded that direct interaction between some chemokine receptors and chemokines or other chemokine receptor ligands may be important for development ofneurodegeneration and/or neuroprotection. The detailed mechanisms of those processes are still not well known. This is confirmed by the high number of inconsistent results in current scientific literature so the further studies are necessary in that field.
Pierwsze doniesienia potwierdzające ekspresję chemokin i ich receptorów w komórkach ośrodkowego układu nerwowego (OUN) pojawiły się kilkanaście lat temu. Od tego czasu opublikowano wiele prac poszerzających naszą wiedzę na ten temat. Ostatnie doniesienia zwracają szczególną uwagę na zaangażowanie chemokin i receptorów chemokinowych w procesach neurodegeneracji i neuroprotekcji. Istnieją przesłanki świadczące o tym, że chemokiny mogą w sposób bezpośredni prowadzić do neurodegeneracji poprzez aktywację swoich receptorów na powierzchni komórek nerwowych, jak i w sposób pośredni poprzez aktywację mikrogleju, który następnie uwalnia związki neurotoksyczne uszkadzające neurony. Istnieją też dowody na obecność receptorów chemokinowych i chemokin odpowiedzialnych za proces neuroprotekcji. Jak dotąd odnotowano obecność tylko dwóch chemokin wytwarzanych konstytutywnie w OUN, są nimi: CX3CL1 (fraktalkina) i CXCL12 (stromal-cell-derived factor 1, SDF-1). Na powierzchni neuronów stwierdzono z kolei ekspresję znacznej liczby receptorów chemokinowych, takich jak: CXCR2, CXCR4, CCR1, CCR3, CCR4, CCR5, CCR9/10, CX3CR1 i DARC. Na podstawie przedstawionych doniesień można wnioskować, że bezpośrednia interakcja między niektórymi receptorami chemokinowymi a chemokinami lub innymi ligandami dla tych receptorów może mieć duże znaczenie w procesach neurodegeneracji i/lub neuroprotekcji. Dokładne mechanizmy tych procesów są jednak wciąż niedostatecznie poznane. Świadczy o tym duża liczba sprzecznych informacji dostępnych w aktualnym piśmiennictwie, w związku z czym konieczne są dalsze badania tego interesującego zagadnienia.
Źródło:
Aktualności Neurologiczne; 2011, 11, 4; 210-215
1641-9227
2451-0696
Pojawia się w:
Aktualności Neurologiczne
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Korelacja obrazu MRI z neuropatologią i kliniką w stwardnieniu rozsianym
Correlation between MRI, neuropathology and clinics in multiple sclerosis
Autorzy:
Gierach, Paweł
Głąbiński, Andrzej
Powiązania:
https://bibliotekanauki.pl/articles/1057898.pdf
Data publikacji:
2011
Wydawca:
Medical Communications
Tematy:
stwardnienie rozsiane
tomografia rezonansu magnetycznego
zapalenie
demielinizacja
neurodegeneracja
glioza
multiple sclerosis
magnetic resonance imaging
inflammation
demyelination
neurodegeneration
gliosis
Opis:
Magnetic resonance imaging (MRI) of the central nervous system (CNS) is currently the most important imaging tool for diagnosis and monitoring of multiple sclerosis (MS). Recently several studies were published looking for the correlation between neuroimaging, clinics and pathology in the CNS during MS. These efforts are focused on seeking correlation between changes in MRI scans and inflammation, demyelination, neurodegeneration and gliosis in CNS. T1-weighted hypointensive lesions in MS correlate mostly with demyelination and neuronal loss. Moreover many trials indicate that the volume of T1-hypointense lesions correlate well with clinical disability in MS patients. Gadolinium enhancement in T1-weighted images reflects blood-brain barrier (BBB) breakdown and histologically correlates with the inflammatory phase of lesion development. Most MS lesions are hyperintense on T2-weighted MRI scans. The appearance of MRI changes in MS is not typical for any kind of tissue destruction. There are some trials suggesting that in clinically isolated syndromes (CIS) the number of cerebral T2-lesions is predictive for the development of definite MS in thefuture. All of data presented above indicate that there are still many problems with correlating CNS neuroimaging data from MS patients with their clinical status as well as with CNS histopathology. However, there is some progress in that field lately because of development of the new MRI techniques.
Badanie ośrodkowego układu nerwowego (OUN) techniką rezonansu magnetycznego (magnetic resonance imaging, MRI) jest obecnie najważniejszym badaniem dodatkowym w diagnostyce i monitorowaniu stwardnienia rozsianego (SM). W ostatnich latach pojawiło się duże zainteresowanie możliwościami poszukiwania korelacji między obrazem uzyskanym w MRI a kliniką i neuropatologią podczas rozwoju SM. Badacze poszukują korelacji między obrazem MRI a zapaleniem, demielinizacją, neurodegeneracją oraz gliozą w OUN. Obecnie uważa się, że hipointensywne zmiany w obrazach T1-zależnych najlepiej korelują z rozwojem demielinizacji i neurodegeneracją. Ponadto liczne badania potwierdzają, że objętość ognisk widzianych w sekwencji T1 może korelować z nasileniem niesprawności u pacjentów z SM. Obrazy T1-zależne wzmocnione gadoliną ujawniają miejsca w OUN, w których nastąpiło uszkodzenie bariery krew-mózg i świadczą o aktywnym procesie zapalnym. Olbrzymia większość ognisk patologicznych w OUN w przebiegu SM jest hiperintensywna w sekwencji T2. Nie jest to jednak obraz typowy dla jakiegokolwiek procesu patologicznego. Istnieją badania sugerujące, że liczba ognisk w sekwencji T2 u chorych z CIS (clinically isolated syndrome) koreluje z prawdopodobieństwem rozwoju SM w przyszłości. Przedstawione wyniki wskazują, że przy pomocy MRI wciąż nie uzyskujemy odpowiedzi na wiele pytań dotyczących przyżyciowej oceny zmian patologicznych zachodzących w OUN podczas SM, niemniej jednak dostępne dane sugerują, że możemy to już robić z pewnym przybliżeniem.
Źródło:
Aktualności Neurologiczne; 2011, 11, 4; 244-250
1641-9227
2451-0696
Pojawia się w:
Aktualności Neurologiczne
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Aktualny model immunopatogenezy stwardnienia rozsianego – nowe możliwości terapeutyczne
Current model of immunopathogenesis of multiple sclerosis – new therapeutic options
Autorzy:
Bartosik-Psujek, Halina
Powiązania:
https://bibliotekanauki.pl/articles/1053352.pdf
Data publikacji:
2014
Wydawca:
Medical Communications
Tematy:
demyelination
immunopathogenesis
multiple sclerosis
multiple sclerosis therapy
neurodegeneration
stwardnienie rozsiane
terapia stwardnienia rozsianego
neurodegeneracja
immunopatogeneza
demielinizacja
Opis:
The aetiology of multiple sclerosis remains incompletely understood. In patients occurs both demyelination, inflammation, axonal damage and oligodendrocytes degeneration. The changes affect both white and grey matter, and also has been shown in normal appearing grey and white matter. However, it is well established that the immune system directly participates in the destruction of myelin and nervous cells and numerous abnormalities on the cellular and humoral response both in blood and cerebrospinal fluid were found in multiple sclerosis patients. The mechanisms leading to damage of the central nervous system are multifactorial. T lymphocytes play the key role, but B lymphocytes, macrophages and microglial cells are also included. Moreover, neurotoxic agents and metabolic disorders may lead to a direct damage of the central nervous system. The paper presents results of recent studies on the immunopathogenesis of multiple sclerosis and the various stages leading to damage to the central nervous system are discussed: the role of the activation of lymphocytes and antigen presenting cells both in blood and in the central nervous system, pass through the blood–brain barrier, the role of T cells and their respective subpopulations (Th1, Th2, and Th17), the importance of B cells, antibodies and the complement system and the mechanisms of demyelination and axonal damage. At the same time are discussed how drugs used in multiple sclerosis therapy affect different stages of the multiple sclerosis aetiopathogenesis, taking into account also the drugs which are at the clinical trials.
Etiologia stwardnienia rozsianego nadal nie została jednoznacznie wyjaśniona. U chorych występują: demielinizacja, odczyn zapalny, uszkodzenie aksonów i degeneracja oligodendrocytów. Zmiany dotyczą zarówno istoty białej, jak i szarej, ponadto wykazano, że również w pozornie niezmienionej istocie białej i szarej występuje rozlane uszkodzenie tkanek mózgu. Obecnie przyjmuje się autoimmunologiczny charakter schorzenia, na co wskazuje obecność u chorych licznych nieprawidłowości dotyczących reakcji komórkowych i humoralnych we krwi oraz w płynie mózgowo-rdzeniowym. Mechanizmy prowadzące do uszkodzenia struktur ośrodkowego układu nerwowego są wieloczynnikowe. Kluczową rolę odgrywają limfocyty T, ale włączone są także limfocyty B, komórki mikrogleju i makrofagi. Istotne jest znaczenie zależnych od demielinizacji czynników neurotoksycznych oraz zaburzeń metabolicznych, które mogą prowadzić do bezpośredniego uszkodzenia struktur ośrodkowego układu nerwowego. W pracy przedstawiono wyniki najnowszych badań dotyczących immunopatogenezy stwardnienia rozsianego. Opisano poszczególne etapy zaburzeń prowadzących do uszkodzenia ośrodkowego układu nerwowego: aktywację limfocytów i rolę komórek prezentujących antygen zarówno we krwi, jak i w obrębie ośrodkowego układu nerwowego, przejście przez barierę krew–mózg, funkcję limfocytów T i ich poszczególnych subpopulacji (Th1, Th2, Th17), znaczenie limfocytów B, przeciwciał i układu dopełniacza oraz demielinizację i mechanizmy uszkodzenia aksonów. Jednocześnie omówiono, jak na poszczególne etapy etiopatogenezy stwardnienia rozsianego wpływają leki stosowane w terapii choroby, uwzględniając również najnowsze preparaty będące na etapie badań klinicznych.
Źródło:
Aktualności Neurologiczne; 2014, 14, 2; 117-123
1641-9227
2451-0696
Pojawia się w:
Aktualności Neurologiczne
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Mechanizmy neurodegeneracji i jej markery w stwardnieniu rozsianym
Mechanisms of neurodegeneration and its markers in multiple sclerosis
Autorzy:
Woliński, Paweł
Jałosiński, Marcin
Głąbiński, Andrzej
Powiązania:
https://bibliotekanauki.pl/articles/1059128.pdf
Data publikacji:
2008
Wydawca:
Medical Communications
Tematy:
neurodegeneracja
utrata neuronów
atrofia mózgu
stwardnienie rozsiane
markery
neurodegeneracji
neurodegeneration
neuronal loss
brain atrophy
multiple sclerosis
neurodegeneration markers
Opis:
Neurodegeneration is a very important process in the pathology of multiple sclerosis (MS). However, mechanisms leading to neurodegeneration in MS are still poorly understood. One of the most probable mechanisms triggering damage of the neuron is apoptosis induced by calcium-dependent enzymes. This review presents the mechanism of calcium overload of neuronal cell and also describes the direct and indirect mechanisms of neurodegeneration. Direct mechanism of neurodegeneration is induced by infiltration of the central nervous system (CNS) by immune cells like T-cells and macrophages and their direct damaging interactions with neurons. Many particular molecules like TRAIL, CD95, TNF-α, TNF-β on immune cells, and CD95/Fas/Apo-1, TNFR1, TNFR2, DR3/Wd1-1/Tramp, DR4/TRAIL-R1, DR5/TRAIL-R2/TRICK/Killer and DR6 on the CNS cells are involved in this process. The direct mechanism of neurodegeneration may be also induced by ROS (reactive oxygen species) and NO (nitric oxide) produced by macrophages and microglia in inflammatory foci. Indirect, secondary mechanism of neurodegeneration is mainly induced by primary demyelination. Furthermore, this paper describes in details the current knowledge about the possible markers of neurodegeneration in MS like neurofilaments; anti-neurofilaments antibodies; tubulin, actin and anti-tubulin, anti-actin antibodies; tau i fosfo-tau proteins; 24S-hydroxycholesterol (24S-ChOH); apolipoprotein E (ApoE); amyloid precursor protein (APP); N-acetylaspartate (NAA); 14-3-3 protein; neuron-specific enolase (NSE); and S100B (S100 calcium binding protein B).
Zjawisko neurodegeneracji (utraty neuronów) jest bardzo ważnym procesem w patologii stwardnienia rozsianego (sclerosis multiplex, SM). Mechanizmy prowadzące do uszkodzenia neuronów w ośrodkowym układzie nerwowym (OUN) w chorobach demielinizacyjnych i neurodegeneracyjnych nie zostały jak dotąd ostatecznie wyjaśnione. Jednym z najbardziej prawdopodobnych mechanizmów prowadzących do uszkodzenia komórek nerwowych jest proces apoptozy wywołany przez enzymy zależne od jonów Ca2+. W niniejszej pracy opisano prawdopodobny mechanizm prowadzący do akumulacji w komórce nerwowej jonów wapnia, a także drogę bezpośredniej i pośredniej neurodegeneracji. Droga bezpośrednia polega na uszkodzeniu neuronów przez kontaktujące się z nimi limfocyty T oraz monocyty infiltrujące ośrodkowy układ nerwowy (OUN). W procesie tym zaangażowanych jest wiele specyficznych molekuł zlokalizowanych na komórkach zapalnych (TRAIL, cD95, TNF-α, TNF-β), a także na komórkach OUN, w tym na neuronach (CD95/Fas/Apo-1, TNFR1, TNFR2, DR3/Wd1-1/Tramp, DR4/TRAIL-R1, DR5/TRAIL-R2/TRICK/Killer oraz DR6). Neuro-degeneracja bezpośrednia może też być wywołana przez reaktywne formy tlenu i tlenek azotu wydzielane przez makrofagi i mikroglej w ogniskach zapalnych. Do procesu neurodegeneracji może dochodzić również na drodze pośredniej, wtórnej względem demielinizacji, która jest konsekwencją procesu zapalnego. Oprócz tego szczegółowo przedstawiono aktualną wiedzę na temat takich markerów neurodegeneracji w SM, jak neuro-filamenty, przeciwciała przeciwko neurofilamentom, tubulina, aktyna i przeciwciała anty-tubulina i anty-akty-na, białko tau i fosfo-tau, 24S-hydroksycholesterol (24S-ChOH), apolipoproteina E (ApoE), białko prekurso-rowe amyloidu (APP), kwas N-acetyloasparaginowy (NAA), białko 14-3-3, specyficzna enolaza neuronalna (NSE) oraz białko S100B.
Źródło:
Aktualności Neurologiczne; 2008, 8, 1; 25-32
1641-9227
2451-0696
Pojawia się w:
Aktualności Neurologiczne
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Procesy patologiczne w mózgu podczas jego niedokrwienia
Pathological processes in the brain during ischaemia
Autorzy:
Justyna Kacperska, Magdalena
Jastrzębski, Karol
Głąbiński, Andrzej
Powiązania:
https://bibliotekanauki.pl/articles/1053377.pdf
Data publikacji:
2013
Wydawca:
Medical Communications
Tematy:
mózg
udar niedokrwienny
neurodegeneracja
zapalenie
autofagia
procesy patologiczne
chemokiny
bariera krew-mózg
cytokiny
interleukiny
brain
ischaemic stroke
neurodegeneration
inflammation
autophagy
pathological processes
chemokines
blood-brain barrier
cytokines
interleukins
Opis:
Stroke to the present is one of the most common causes of death and permanent disability. Ischemic stroke (ischemic stroke called IS) is not only a dangerous disease because of its high mortality rate, but also because of a disability in patients who do survive, which represents approximately 76% of cases. It is a heterogeneous disease entity, which is a set of symptoms caused by focal ischemia or bleeding into the brain tissue caused by a wide variety of reasons. There are two types of strokes: haemorrhagic and ischemic. Haemorrhagic strokes account for 20% of all strokes, the other 80% are ischemic strokes. Stroke is a systemic disease, mainly resulting from vascular pathology. It plays a huge role in atherosclerosis and the mechanisms involved. The disease process affects the whole of the body, not just the cerebral vessels. From the point of view of pathological, ischemic stroke is the rapidly developing neurodegenerative process that leads to cell death. This disease is beyond the vascular damage, induces cell-molecular immune response to central nervous system and the vascular system, aimed at the development of the inflammatory response. The activated cells of the brain and vascular cells are involved in the synthesis of various molecules, among others. cytokines, chemokines, adhesion molecules and inflammatory enzymes. Continues to grow numerous reports confirming the importance of inflammatory factors in the development of ischemic stroke. In this process, the blood-brain barrier plays an important role. At the cellular level it is the main line of microglia immune surveillance of the central nervous system, which is responsible for the induction of the inflammatory response in stroke. In stroke, a sudden change in the expression of cytokines proceeds, which reveal the neurodegenerative effects of inflammatory cytokines and anti-inflammatory cytokines neuroprotective effect. Processes occurring in the brain during ischemia are very complicated and is not involved in a number of factors.
Udar mózgu (stroke) jest obecnie jedną z najczęstszych przyczyn zgonów i trwałego kalectwa. Udar niedokrwienny mózgu (ischaemic stroke, IS) jest niebezpieczną chorobą nie tylko ze względu na dużą śmiertelność, ale również z powodu niepełnosprawności u pacjentów, którzy go przeżywają (około 76% przypadków). Jest to niejednorodna jednostka chorobowa, będąca zespołem objawów ogniskowych powstałych w wyniku niedokrwienia lub krwotoku do tkanki mózgowej spowodowanych wieloma różnymi przyczynami. Rozróżniamy dwa typy udarów mózgowych: krwotoczne i niedokrwienne. Udary krwotoczne stanowią 15% wszystkich udarów, pozostałe 80% to udary niedokrwienne. Udar mózgu jest chorobą ogólnoustrojową, głównie wynikającą z patologii naczyniowej. Ogromną rolę odgrywa tu miażdżyca i mechanizmy z nią związane. Proces chorobowy dotyczy całego organizmu, a nie tylko naczyń mózgowych. Z punktu widzenia patologii udar niedokrwienny mózgu jest dynamicznie rozwijającym się procesem neurodegeneracyjnym, który prowadzi do śmierci komórek (cell death). Oprócz uszkodzenia naczyniopochodnego choroba ta indukuje komórkowo-molekularną odpowiedź immunologiczną ośrodkowego układu nerwowego i układu naczyniowego, ukierunkowaną na rozwój reakcji zapalnej. Aktywowane komórki mózgu, a także komórki układu naczyniowego zaangażowane są w syntezę różnych molekuł, m.in. cytokin, chemokin, cząsteczek adhezyjnych oraz enzymów prozapalnych. Ciągle rośnie liczba doniesień potwierdzających duże znaczenie czynników zapalnych w rozwoju udaru niedokrwiennego mózgu. W procesie tym znaczącą rolę odgrywa bariera krew-mózg. Na poziomie komórkowym mikroglej stanowi główną linię nadzoru immunologicznego nad ośrodkowym układem nerwowym, odpowiedzialną za indukcję reakcji zapalnej w udarze mózgu. W udarze mózgu następuje gwałtowna zmiana ekspresji cytokin, które ujawniają neurodegeneracyjny efekt cytokin prozapalnych oraz neuroprotekcyjny efekt cytokin antyzapalnych. Procesy zachodzące w mózgu podczas jego niedokrwienia są bardzo skomplikowane i wiele czynników jest w nie zaangażowanych.
Źródło:
Aktualności Neurologiczne; 2013, 13, 1; 16-23
1641-9227
2451-0696
Pojawia się w:
Aktualności Neurologiczne
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-5 z 5

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies