Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "mechanism analysis" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
Dynamics model of stabilization mechanism for helicopter PAD
Autorzy:
Brewczyński, D.
Tora, G.
Powiązania:
https://bibliotekanauki.pl/articles/241532.pdf
Data publikacji:
2016
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
maritime engineering
kinematic analysis
dynamic analysis
mechanism design
safety
Opis:
Helipad located on ships greatly increases their ability to perform tactical and logistical abilities. They allow performing reconnaissance from the air, transportation of cargos and people to and from the ship. Landing on a moving ship particularly small size during bad weather is not a safe manoeuvre. Article provides an overview of existing solutions that improve safety during the landing manoeuvre of the helicopter to the ship and describes an innovative mechanism with can stabilize helicopter pad in four degrees of freedom. This solution is characterized in that the landing plate is movable and actuated simultaneously by two support plates and two levers. Plates and levers are driven by separate linear motors that move along the guides connected to the base. The main feature of the mechanism is that when the base is not stable, it can reduce the linear movement of the landing platform in the vertical and transverse direction and angular displacement around an axis perpendicular and parallel to the axis of the ship. A preferred feature of the mechanism is that in folded position it occupies relatively little space. In addition, advantageous attribute of the mechanism is its large working area, enabling the reduction of high amplitude vibration. The article contains a calculation of the kinematics for the proposed structure of the mechanism. It also includes speed drives waveforms, which are the result of simulations for the input parameters of the ship movement.
Źródło:
Journal of KONES; 2016, 23, 2; 61-68
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Dynamic positioning system of helicopter pad on the ship
Autorzy:
Brewczyński, D.
Tora, G.
Powiązania:
https://bibliotekanauki.pl/articles/243395.pdf
Data publikacji:
2014
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
mechanical engineering
maritime engineering
kinematic analysis
mechanism design
Opis:
Helicopter pad located on the ship significantly increase the operational capabilities of military and civilian ships. During the storm, especially side tilts of the ship hinder or even prevent the safe use of the helicopter pad. It is proposed to apply the system placed between the deck of the ship and landing site plate, driven by three independent linear drives located under the deck. The task of the system will be preventing from transferring to Helicopter pad the tilt of the ship around the longitudinal axis and the displacement of the deck along the transverse and vertical axis within the limits of the work area. The mechanism consists of the three movable pillars with the plate on top, which is the movable helicopter pad platform. As the linear actuators, plates moving along a horizontal guide were used, powered by system of steel cables with three independent electric motors. In folded state the mechanism, take up appropriately little space in the deck area. For the assumed extreme amplitudes of the ship motion, minimum dimensions of the mechanism links that meets the requirement to work in one configuration and lack of collisions were determined. Kinematic relationships were created indicate which mechanical quantities should be measured in real time to determine the momentary drives speed. For the adopted assumptions simulation was performed, confirming the predicted behaviour of the system. Based on the dynamics equations of system, drives loads, their power and individual links and joints load were determined.
Źródło:
Journal of KONES; 2014, 21, 4; 21-27
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Stabilization mechanism for helicopter pad with four degrees of freedom
Autorzy:
Brewczyński, D.
Tora, G.
Powiązania:
https://bibliotekanauki.pl/articles/242515.pdf
Data publikacji:
2015
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
mechanical engineering
maritime engineering
kinematic analysis
mechanism design
safety
Opis:
Helipad located on ships greatly increases their ability to perform tactical and logistical abilities. They allow performing reconnaissance from the air, transportation of cargos and people to and from the ship. Landing on a moving ship particularly small size during bad weather is not a safe manoeuvre. Article provides an overview of existing solutions that improve safety during the landing manoeuvre of the helicopter to the ship and describes an innovative mechanism with can stabilize helicopter pad in four degrees of freedom. This solution is characterized in that the landing plate is movable and actuated simultaneously by two support plates and two levers. Plates and levers are driven by separate linear motors that move along the guides connected to the base. The main feature of the mechanism is that when the base is not stable, it can reduce the linear movement of the landing platform in the vertical and transverse direction and angular displacement around an axis perpendicular and parallel to the axis of the ship. A preferred feature of the mechanism is that in folded position it occupies relatively little space. In addition, advantageous attribute of the mechanism is its large working area, enabling the reduction of high amplitude vibration. The article contains a calculation of the kinematics for the proposed structure of the mechanism. It also includes speed drives waveforms, which are the result of simulations for the input parameters of the ship movement.
Źródło:
Journal of KONES; 2015, 22, 3; 7-12
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Selected aspects of simulation of multi - module mechanisms with the use of multibody method
Autorzy:
Krasoń, W.
Kozłowski, R.
Derewońko, A.
Golczak, K.
Powiązania:
https://bibliotekanauki.pl/articles/247966.pdf
Data publikacji:
2012
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
bridges
simulation of multi-component mechanism
rigid models
multibody numerical analysis
Opis:
The paper presents numerical analysis of a single segment of a floating bridge built in the form of a metal cassette with a movable bottom. An internal elastic container - a pontoon filled with the air was fixed in the cassette [4]. It enables a fluent change of displacement of a single segment and of a floating ribbon assembled from segments. A multibody analysis of cooperation of the cassette in the process of filling the pontoon and opening the cassette was discussed. Numerical analysis of a single cassette presented in the paper constitutes a part of tests including stand tests. The single floating cassette has a typical shelled construction consists of a tight deck, a pneumatic chamber closed with a reinforced movable bottom and sets of fastenings together with a mechanism of bottom opening. Each cassette is equipped with a highly resistant elastic or semi-elastic cushion hereinafter called a pontoon. The movement of the bottom and the process of opening the cassette module with a pneumatic air cushion realized under an influence of pressure of the compressed air. As a result of uneven filling the individual chamber of the pontoon with the air or their uneven emptying in the process of closing the cassette, there can occur the asymmetry of displacements of the bottom resulted even in seizing of telescopic mechanisms. In the paper were considered the cases of symmetrical and asymmetrical movement of the bottom corresponding to symmetrical and unsymmetrical pull out of the telescopic mechanism modules. Dynamical analysis of movement of cooperating subsystems of the floating cassette was carried out with the use of MSC.Adams code [5, 8].
Źródło:
Journal of KONES; 2012, 19, 1; 207-214
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies