Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "dual fuel engine" wg kryterium: Temat


Tytuł:
Dual - fuel low power generator with diesel engine using alternative fuels
Autorzy:
Imiołek, M.
Piętak, A.
Imiołek, A.
Powiązania:
https://bibliotekanauki.pl/articles/246549.pdf
Data publikacji:
2012
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
alternative fuels
diesel engine
dual-fuel engine
biofuels
Opis:
At the moment, there is a growing interest in low-power generating units in dispersed system. The production of energy in small units located in the vicinity of the energy recipients offers considerable benefits. First and foremost, it lowers the cost of energy production and the cost of its transfer and also makes the recipient independent from the domestic supplier. Small cogeneration aggregates will facilitate the use of energy from dispersed renewable resources. Gas self-ignition engines in cogeneration system powered with biofuels can be used in construction industry as ecological sources of heat and electrical energy, limiting the need for fossil fuels. This paper presents the possibility of using alternative fuels for internal combustion engines. It describes the possibility of using liquid biofuels separately or natural gas fuel to power diesel engines in dual fuel system. The conception of supplying low-power generator with diesel engine with natural gas to a dose of liquid biofuels test case. Pointed to the factors determining the desirability of a particular concept. Indicated the modification of the engine power to supply the natural gas generator with a dose of liquid biofuels. New technologies of extracting and using biofuels and alternative fuels are being introduced and developed for generating heat and electric energy. Studies on the use of gas and liquid alternative fuels are directly linked to research on the production of renewable and alternative energy as well as environment protection by minimizing emissions of toxic substances into the atmosphere.
Źródło:
Journal of KONES; 2012, 19, 3; 171-176
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A comparison of selected operating parameters of the diesel engine fuelled with mixtures of diesel oil or liquid bio - fuel and natural gas for low - power generators
Autorzy:
Boruta, G.
Imiołek, M.
Powiązania:
https://bibliotekanauki.pl/articles/241789.pdf
Data publikacji:
2012
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
diesel engine
dual-fuel engine
biofuels
alternative fuels
Opis:
Following the modern fuel market, one can notice that prices of liquid petroleum derivatives - petrol and diesel oil - which most often fuel piston internal combustion engines are increasingly higher. Similarly, the price of petroleum-derivative gas (LPG - the liquefied petroleum gas - simply speaking, a mixture of propane and butane) is also growing. Many academic and industrial institutions of science conduct research to determine whether it is possible to replace liquid petroleum-derivative fuels with some other potentially cheaper ones. It would also be beneficial if these new fuels were more "ecological" - so that their combustion products would not be harmful for the environment and if they were produced with the use of plants. Fuel stations commonly offer a fuel for diesel engines which is a mixture of fatty acids methyl esters (FAMEs) from vegetable oils, in Poland for instance from rape seeds. The paper presents a comparison of selected operating parameters of the Hatz 1B40 engine fuelled with mixtures of diesel oil or liquid bio-fuel and natural gas. Indicator diagrams, exhaust gases composition and vibration signals recorded on the engine body were analyzed. The study was conducted on the Hatz 1B40 diesel engine which is used among others in FOGO power generator sets, after replacing the original feeding system by common rail system for liquid fuels and after adding natural gas feeding system.
Źródło:
Journal of KONES; 2012, 19, 4; 111-116
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The effect of methanol-diesel combustion on performance and emissions of a direct injection diesel engine
Autorzy:
Tutak, W.
Szwaja, S.
Powiązania:
https://bibliotekanauki.pl/articles/241919.pdf
Data publikacji:
2015
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
dual-fuel engine
exhaust emission
modelling
diesel
Opis:
The results of CFD modelling a dual fuel diesel engine powered with both methanol and diesel fuel is presented in the paper. Modelling was performed with 20 and a 50% energetic share of methanol in the entire dose. The analysis was conducted on both the thermodynamic parameters and exhaust toxicity of dual fuel engine. It was found that the various share of methanol influences the ignition delay of the combustion process and after start of main phase of combustion, the process occurs faster than in case of the diesel engine. It was found that the time of 10-90% burn of the fuel is much shorter than it is in the diesel engine. The dual fuel engine was characterized by higher indicated mean pressure in the whole range of diesel fuel injection timings. While analysing toxic exhaust emission from the dual fuel engine powered with methanol, it was found that the rate of NO formation was significantly higher than from the diesel engine. The combustion process in the dual fuel engine occurs more rapidly than in the conventional diesel engine, which contributes to form areas with high temperature, and in combination with presence of oxygen from the air and oxygen bonded in the methanol, promotes the NO formation. In the case of the dual fuel engine, it was found that soot emission was reduced. The engine running with diesel injection start at 8.5 deg before TDC, the soot emissions were more than twice lower in the dual fuel engine, while the emission of NO was much higher.
Źródło:
Journal of KONES; 2015, 22, 2; 259-266
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Natural gas engines - problems and challenges
Autorzy:
Kowalewicz, A.
Wojtyniak, M.
Powiązania:
https://bibliotekanauki.pl/articles/243241.pdf
Data publikacji:
2007
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
combustion engine
natural gas
dual-fuel engine
combustion duration
knock
Opis:
At former KONES one of the co-authors presented a paper, is which general information about natural gas properties, reserves, production and distribution were given and application to SI and CI engines was presented, compared and discussed. It was shown, that more promising is dual-fuel CI engine. There is a lot of information on combustion, emissions and performances of dual-fuel natural gas engines, but there are also blank areas and controversial opinions, which were pointed out and discussed in this paper. For example: why combustion processes are delayed in comparison with combustion of diesel fuel only. It is also not clear whether noise of dual-fuel engine is higher than that of diesel engine or lower (there are contradictory data). These problems are shown and discussed in this paper. The proposal of further research is presented. Ignition and combustion in dual-fuel natural gas engines is yet not fully recognized, especially: combustion duration, mechanism at gaseous and condensed phase burning, kinetics and diffusion controlled combustion, noise, knock and cycle-by-cycle variation. Optimization of control parameters on account of efficiency and emissions is still an open problem. Influence of natural gas composition and its changes on engine performance and emissions still demand estimation.
Źródło:
Journal of KONES; 2007, 14, 2; 273-282
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Effect of pilot charge size and biogas composition on the operating efficiency of a dual-fuel compression-ignition engine
Autorzy:
Wierzbicki, S.
Śmieja, M.
Mikulski, M.
Piętak, A.
Powiązania:
https://bibliotekanauki.pl/articles/243597.pdf
Data publikacji:
2014
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
CI engine
biogas
dual-fuel engine
pilot dose
efficiency of engine
Opis:
Reduction of greenhouse gases emissions into the atmosphere, as well as increasing the share of renewables in the overall energy balance, forces the search for new, alternative energy sources. One of the fuels, which presents high potential for combustion engines are biomethane or biogas, with methane as the main flammable component. Biogas can be obtained from different products and using a variety of technologies which results in its wide availability and relatively easy manufacture. The largest sources of biogas can be animal farms or sewage treatment plants and waste dumps in which significant quantities of biogas are obtained as a result of naturally occurring processes. Biogas can also be obtained from processing of energy crops or waste processing in agricultural, food and meat processing plants. In this article, the possibility of using biogas as a fuel for CI engines has been examined. In such engine, combustion of biogas (methane) requires the use of dual fuel supply system, in which in addition to methane, liquid fuel is injected into the combustion chamber, in order to initiate the self-ignition of gaseous fuel. The paper presents exemplary results of the impact of the proportion of different fuels and biogas composition on the efficiency of the engine work cycle.
Źródło:
Journal of KONES; 2014, 21, 3; 279-284
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Compressed natural gas engines. A review
Autorzy:
Kowalewicz, A.
Powiązania:
https://bibliotekanauki.pl/articles/242089.pdf
Data publikacji:
2009
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
CNG vehicle
NGSI engine
NGCI engine
CNG dual-fuel engine
ecology
Opis:
Resources, production, refuelling stations and physic-chemical properties of natural gas are presented. Technical problems connected with application of natural gas to SI and CI engines are shown and analyzed. Presently most of gas vehicles are converted from gasoline to natural gas application but also many companies produce gas vehicles driven with Sl engines originally fabricated as gas vehicles. However natural gas spark ignition engines have lower torque than CI engines normally used in trucks, pick-ups and busses. Therefore CI engines are also adapted to gas fuelling as dual-fuel engines. Comparison of NG SI engines and dual-fuel engines is performed. Performances and emissions of gas automotive engines are presented. World natural gas reserves, natural gas production physical and chemical properties of typical natural gas, natural gas vehicles and refuelling stations in the world, schematic of CNG fuelling installation of IVth and Vth generation, combustion system, natural gas admission and control in DF NG engine, schematic of ADCR engine adapted to CNG fuelling are presented in the paper.
Źródło:
Journal of KONES; 2009, 16, 3; 173-183
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Chosen problems of transport and vessel’s fuelling by liquefied natural gas
Autorzy:
Herdzik, J.
Powiązania:
https://bibliotekanauki.pl/articles/246950.pdf
Data publikacji:
2018
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
natural gas
LNG fuelled vessel
dual fuel engine
LNG
boil-off gas
Opis:
It was presented the possibilities and ways of methane transport by sea. They are still searched new better possibilities of methane transport especially when the gas mining is at the sea. The advantages of using methane as marine fuel are discussed because it seems to be ecological and cheaper one. The lack of LNG bunkering network for vessels is the biggest problem to share methane as a marine fuel. Only a few ports inside the Baltic Sea area give such possibility. Of course, the network is under construction but the development goes too slowly to fulfil the International Maritime Organization (IMO) requirements on 2020 year. A challenge is to prevent failure during cargo operations, loading hose failure, pipe rupture, manifold leak, tank overflowing, or rupture etc. The risk of failure is increased due to very low temperature of liquid methane and the quick temperature change of all elements of cargo system during operations. The aim of the work was to show the indicated problems of vessel’s fuelling by LNG. It was discussed the methane slip during cargo operations and fuelling. The misfires during burning processes into the engines are the biggest problem due to very narrow window of methane self-ignition. It happens the misfiring or knocking cycles. It disturbs the correct work of the engine, resulting in quick engine malfunction or damage.
Źródło:
Journal of KONES; 2018, 25, 2; 157-162
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analysis of combustion process in a dual-fuel compression ignition engine fuelled with LPG in the liquid phase
Autorzy:
Luft, S.
Powiązania:
https://bibliotekanauki.pl/articles/246428.pdf
Data publikacji:
2007
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
dual-fuel compression ignition engine
LPG
Opis:
Investigation on fuelling a dual-fuel compression ignition engine with various fuels, that are unconventional for this type of engine, was carried out for many years in the Department of Internal Combustion Engines and Automobiles in Technical University of Radom. Such fuels as methanol, ethanol and natural gas were applied in the investigation. Recently, the investigation regards application of LPG - a fuel that is very popular in Poland. Within the project No. 4T12D02226 of the Committee of Scientific Research, it was tested, among others, an engine equipped with injection system for diesel fuel pilot dose - a common rail type. As a result of the former investigation, load characteristics of specific energy consumption as well as CO, CO2, nox, HC and smoke emissions data were obtained [1]. In order to analyze variability of fundamental combustion process parameters, histories of the pressure inside combustion chamber have been registered during investigation. Investigation on changes of these parameters in the described engine version is particularly important due to possibility of knocking combustion occurrence that leads to the failure of such engine parts as piston or valves. Changes of these parameters versus engine load for various injection timing of diesel fuel pilot dose were analysed.
Źródło:
Journal of KONES; 2007, 14, 3; 355-362
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The concept of the tractor powered by biodiesel and biogas
Autorzy:
Kruczyński, S. W.
Pawlak, G.
Wołoszyn, R.
Powiązania:
https://bibliotekanauki.pl/articles/241857.pdf
Data publikacji:
2012
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
biogas
dual fuel CI engine
agriculture tractor
sustainable energy
Opis:
Agriculture farms, especially animal farms consume a lot of energy. They also have big potential to produce energy by themselves. The production of biogas and its efficient utilisation could meet the need for fuel and energy. The production of biogas on a farm and its utilisation as a fuel could improve its energetic balance and safe some money. The paper describes the possible way of utilisation of upgraded manure biogas as a fuel for compression ignition engine, which is adopted for dual fuelling. The engine is going to be fuelled with vegetable oil ester and biogas produced directly on animal farm. Some calculation of fuel consumption of both fuels and analysis of possible changes of combustion process for dual fuelling mode are presented. There is also described the concept of adaptation of CI engine for agriculture tractor to dual fuelling with vegetable oil ester and biogas. In Poland, there are about 1300 caw farms, 3000 pig farms and about 3500 chicken farms. Taking into account that the production of biogas is efficient and give some profit for minimum 100 caws, 500 pigs or 5000 chickens in the farm, there is together about 7800 farms where production of biogas could be profitable [2]. At the end of 2009 there were only 126 installation for biogas production and they produce 70.88 MW of energy. Biogas is one of the most promising sources of renewable energy because the efficiency of conversion of biomass into fuel is relatively high.
Źródło:
Journal of KONES; 2012, 19, 4; 339-346
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Experimental tests on a dual fuel compression-ignition engine powered by biogas with a varying chemical composition
Autorzy:
Wierzbicki, S.
Śmieja, M.
Kozłowski, M.
Nieoczym, A.
Krzysiak, Z.
Powiązania:
https://bibliotekanauki.pl/articles/247546.pdf
Data publikacji:
2016
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
biogas
dual fuel compression-ignition engine
emission of toxic compounds
Opis:
Biogas is among the fuels whose significance in the general energy balance will increase. These results from the fact that it may be produced from various kinds of waste materials, and it is therefore considered a renewable fuel of the second generation. Because of its properties, biogas may be used directly to power spark-ignition engines. Nonetheless, numerous tests are underway involving the possibility of using biogas to power compression-ignition engines. In order to use biogas, whose main combustible component is methane, in compression-ignition engines, it is necessary to use a dual fuel power supply system. With such a system supplying power to the engine, the gas and air mixture in the cylinder is ignited by a small dose of liquid fuel. This paper presents a fragment of the research on the use of biogas with a varying chemical composition for powering compression-ignition engines. The described tests were conducted using a one-cylinder compressionignition engine mounted on an engine test stand. The fuel gas consisted of a mixture of natural gas and carbon dioxide; the share of each individual component was regulated from the station, which controlled the operation of the whole test stand. The developed control system also enabled the adjustment of the operating parameters of the engine test stand and the parameters of the injection of liquid fuel, such as the injection pressure, the timing angle of injection and the size of the dose. The results presented in the paper show the impact of the individual control parameters of the engine on the value of the engine’s torque and the amount of toxic compounds in the exhaust fumes.
Źródło:
Journal of KONES; 2016, 23, 3; 549-554
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The impact of the share of CNG on the combustion process in a dual-fuel compression-ignition engine with the common rail system
Autorzy:
Wierzbicki, S.
Śmieja, M.
Mikulski, M.
Powiązania:
https://bibliotekanauki.pl/articles/242699.pdf
Data publikacji:
2016
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
natural gas
dual-fuel compression-ignition engine
Common Rail system
combustion process
Opis:
The struggle against global warming necessitates the search for new sources of energy, which limit the emission of carbon dioxide into the atmosphere. Among various fuels used to supply energy nowadays, the importance of natural gas is constantly growing. This is caused by the fact that this fuel is characterised by the lowest share of coal among all fossil fuels. Because of its properties, natural gas can be used directly to power spark-ignition engines. The use of this fuel for compression-ignition engines on the other hand is limited due to the high autoignition temperature of methane. Currently, research is being conducted in numerous centres on the possibility of using fuel gases to power CI engines operating in a dual-fuel system. The present article discusses the impact of the share of CNG in the supply dose on the operation of a CI engine. An engine with the Common Rail injection system programmed for mono-fuel operation was used in the research. Based on the conducted tests it has been proved that supplying this type of engine with fuel gas considerably changes the course of the combustion process, which is caused by the fact that the gas and air mixture present in the combustion chamber starts burning now of the autoignition of the first portion of liquid fuel. The obtained test results confirm the necessity to change the injection parameters of the pilot dose of diesel fuel (the timing angle of injection and the pressure of fuel) in cases when this type of engine operates in a dual-fuel system.
Źródło:
Journal of KONES; 2016, 23, 2; 415-422
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analysis of possibility of dual fuelling of turbochrged CI engine with ethanol and diesel oil
Analiza możliwości zasilania turbodoładowanego silnika o zapłonie samoczynnym dwupaliwowo etanolem i olejem napędowym
Autorzy:
Pawlak, G.
Powiązania:
https://bibliotekanauki.pl/articles/244843.pdf
Data publikacji:
2008
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
etanol
silnik dwupaliwowy
alternatywne zasilanie silnika o zapłonie samoczynnym
zmiana sposobu zasilania
ethanol
dual fuel engine
alternative fuelling of CI engine
change of mode of fuelling
Opis:
Bi-fuel supply of CI engine could become in a short time the one of ways to the replacement of the considerable share of diesel fuel by alternative fuels with the low cetane number to which, among others, the ethyl alcohol belongs. Ethanol has been already applied as a fuel for CI engine. Scania 9 litters engine with risen compression ratio are fuelled with ethanol with some addictives, which enable its self-ignition. Dual fuelling of CI engine could be applied for older and contemporary construction of CI engine as a way to make them more flexible as far as alternative fuels application is concerned. Two ways of fuelling of CI engine with ethanol and diesel oil are proposed. Both of them allow for conventional fuelling adapted turbocharged CI engine with diesel oil or dual fuelling with ethanol and diesel oil. First: the ethanol injection to the engine induction channel during the opening of inlet valve and after the exhaust valve closing (in order to make impossible to escape of a fresh charge during valve overlap). Second: mixing of ethanol with diesel fuel in the „common rail" fuel system and the injection of both fuels through the engine factory fuel system. Diesel fuel and ethyl alcohol are not mixing in itself, but their mutual mixing will be possible in the fuel pump of the „common rail" engine fuel system.
Dwupaliwowe zasilanie silnika o zapłonie samoczynnym mogłoby w niedługim czasie stać się jednym ze sposobów na zastąpienie znacznej części oleju napędowego paliwami alternatywnymi o niskiej liczbie cetanowej do których między innymi należy alkohol etylowy. Etanol już znalazł zastosowanie jako paliwo do silnika o zapłonie samoczynnym. Dziewięciolitrowy silnik Scania ze zwiększonym stopniem sprężania jest zasilany etanolem z dodatkami umożliwiającymi jego samozapłon. Dwupaliwowe zasilanie silnika wysokoprężnego może by sposobem na zróżnicowanie paliw jakimi można będzie zasilać starsze i obecnie produkowane silniki wysokoprężne. Zaproponowane zostały dwa sposoby zasilania silnika dwupaliwowo etanolem i olejem napędowym. Obydwa z nich pozwalają, w zależności od potrzeb, na zasilanie silnika dwupaliwowo lub w sposób konwencjonalny tylko olejem napędowym. Pierwszy: wtrysk etanolu do kanału dolotowego silnika w czasie otwarcia zaworu dolotowego i po zamknięciu zaworu wylotowego (aby uniemożliwić ucieczkę świeżego ładunku w czasie przekrycia zaworów). Drugi: zmieszanie etanolu z olejem napędowym w układzie zasilania „common rail" i wtrysk obu paliw z wykorzystaniem fabrycznego układu zasilania silnika. Olej napędowy i alkohol etylowy nie rozpuszczają się w sobie, a wzajemne ich mieszanie będzie możliwe dzięki działaniu pompy paliwa w układzie „common rail".
Źródło:
Journal of KONES; 2008, 15, 4; 465-469
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analysis of performances of a dual-fuel turbocharged compression ignition engine
Autorzy:
Różycki, A.
Powiązania:
https://bibliotekanauki.pl/articles/247435.pdf
Data publikacji:
2010
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
dual fuel compression ignition engine
knock
engine head vibration amplitude
compressed natural gas (CNG)
common rail
Opis:
The paper describes research work on a full-scale dual-fuel 4-cylinder turbocharged compression ignition engine. Compressed natural gas (CNG) was applied as the main fuel. Selfignition of the air-fuel mixture was initiated from a diesel oil dose injected by a common rail system. The research was aimed to establish maximum CNG share in the mixture delivered into the cylinder. An excessive CNG share may result in "hard" engine operation. It may also lead to the occurrence of vibrations of piston-crank construction parts resulting in failure of this mechanism. These vibrations may originate from knocking combustion (selfignition of the air-fuel mixture in the zone of non-combusted mixture) or vibration excitation as a result of rapid pressure rise after selfignition. Boundary values of the CNG energy share were determined by analysing parameters related to the rate of pressure rise and rate of heat release as well as the engine head vibration amplitude represented by the voltage signal generated by the knock sensor. Boundary values of the above mentioned parameters were determined on the basis of measurements done on the engine fuelled in a standard mode. These parameters were registered at operating points corresponding to the maximum power and load. Then, there were done measurements of basic engine operating parameters at dual fuelling in chosen points of the load characteristic for the engine speed at which the engine fuelled in a standard mode had maximum torque. Load characteristics were done for three various diesel oil doses (constant over the whole range of engine load). Load changes were realized by changes ofCNG energy share in the fuel charge. Analysis of combustion process parameters and engine head vibrations showed that CNG energy share may reach 60%. Maximum torque is possible to obtain at 45% CNG energy share. 15% decrease of maximum torque was obtained.
Źródło:
Journal of KONES; 2010, 17, 3; 393-399
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Knock combustion in dual fuel turbocharged compression ignition engines
Spalanie stukowe w turbodoładowanym dwupaliwowym silniku o zapłonie samoczynnym
Autorzy:
Róźycki, A.
Powiązania:
https://bibliotekanauki.pl/articles/245368.pdf
Data publikacji:
2009
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
spalanie stukowe
dwupaliwowy silnik o zapłonie samoczynnym
amplituda drgań głowicy
sprężony gaz ziemny
knocking combustion
gaseous fuel
dual-fuel compression ignition engine
cylinder head vibrations
Opis:
The paper describes some results of examination of dual fuel turbocharged compression ignition engine, which verify possibility of occurring of knock combustion. The first stage of examination was done with the use of standard fuel system. Dual fuel system was used in the second stage. Diesel provided by common rail system was used for ignition of natural gas, which was treated as a main fuel. The fluctuation of the cylinder pressure and engine head vibration was registered for characteristic points of engine run (maximum torque, maximum power, maximum engine efficiency). The spectrum of vibration of engine head was analyzed. Analysis is based on application of Fast Fourier Transform for calculation of characteristic frequency and maximum values of module of transform. Moreover the factors of knock intensity were calculated. The results ofanalysis confirmed previous results which shown that during combustion in CI engine fluctuation of pressure appear. The fluctuation cause vibration of engine head but frequency of the vibration is characteristic for knock combustion. Characteristic frequency doesn 't depend on gas fuel rate in total fuel, which is provided to the cylinder. The magnitude, which changes is maximum of amplitude of vibration. The results of calculation of knock combustion intensity factor, which is based on maximum of amplitude of engine head vibration shown its suitability for identification of knock combustion.
W artykule opisano wyniki badań weryfikujących możliwość wystąpienia spalania stukowego Drży dwupaliwowym zasilaniu pelnogabarytowego turbodoładowanego silnika o ZS. Pierwszy etap badań przeprowadzony był przy standardowym zasilaniu silnika. W drugim etapie badań silnik zasilany był układem dwupaliwowym. Paliwem inicjującym samozapłon ładunku był olej napędowy podawany przez układ common rail. Paliwem podstawowym był gaz ziemny (CNG). Rejestrowane były zmiany ciśnienia w cylindrze i drgania głowicy w charakterystycznych punktach pracy silnika (maksymalny moment, maksymalna moc i maksymalna sprawność silnika). Analizie poddano widma drgań głowicy w okresie spalania. Analiza polegała na zastosowaniu szybkiej transformaty Fouriera do obliczenia charakterystycznych częstotliwości i wartości maksymalnych modułu transformaty. Ponadto wykonano obliczenia wskaźników intensywności stuku. Wyniki analiz potwierdziły wcześniejsze badania, z których wynikało, że w silniku o zapłonie samoczynnym w okresie spalania występują pulsacje ciśnienia wywołujące drgania głowicy o częstotliwości charakterystycznej dla spalania stukowego. Częstotliwość ta występuje niezależnie od udziału paliwa gazowego w ładunku dostarczanym do cylindra. Wielkością, która ulega zmianie jest maksymalna amplituda pulsacji. Wyniki obliczenia wskaźnika intensywności spalania stukowego opartego na maksymalnej amplitudzie drgań głowicy wykazały jego przydatność do identyfikacji spalania stukowego.
Źródło:
Journal of KONES; 2009, 16, 4; 393-400
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Choice of a pilot dose in dual fuel self-ignition engine of a generator, depending on its load
Autorzy:
Imiołek, M.
Piętak, A.
Śmieja, M.
Wierzbicki, S.
Powiązania:
https://bibliotekanauki.pl/articles/247241.pdf
Data publikacji:
2011
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
combustion engine
gas engine
dual fuel powering
CNG
Opis:
One of the basic problems concerning dual fuel powering of self-ignition engines is to determine the minimal dose of diesel oil injected into the combustion chamber in order to trigger self-ignition. Most research conducted to date on double-fuel powering self-ignition has been carried out on engines with mechanical injection systems, which does not ensure the possibility of obtaining very small diesel oil doses initiating self-ignition. The original system of fuelling the engine with diesel oil was replaced with a laboratory Common Rail system. The basic parameters of injector operation were controlled by a specially-developed system ensuring continuous choice of parameters of injector operation. The examined engine was fitted with a prototypical system of methane-air fuelling and a system for controlling and adjusting the supplied dose of methane This study presents the results of research aiming at determining the pilot dose injected into the combustion chamber of the engine to ensure the course of combustion in the engine operating under various loads. The results presented in the paper concern tests of a single-cylinder self-ignition engine, HATZ 1B40, operating in a generator adopted for CNG fuelling.
Źródło:
Journal of KONES; 2011, 18, 4; 129-136
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies