Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "aerodynamic model" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Methods of modern aircraft aeroelastic analyses in the institute of aviation
Autorzy:
Chajec, W.
Powiązania:
https://bibliotekanauki.pl/articles/247210.pdf
Data publikacji:
2018
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
flutter
normal modes
ground vibration test
unsteady aerodynamic model
Opis:
The aeroelastic phenomena analysis methods used in the Institute of Aviation for aircraft, excluding helicopters, are presented in the article. In industrial practice, a typical approach to those analyses is a linear approach and flutter computation in the frequency domain based on normal modes, including rigid body modes and control system modes. They are determined by means of the finite element method (FEM) model of structure or a result of ground vibration test (GVT). In the GVT case, relatively great vibration amplitudes are applied for a good examination of a not truly linear structure. Instead or apart from the measure of generalized masses, a very theoretical model is used for mode shapes cross orthogonality inspection and improvement. The computed or measured normal mode sets are the basis for flutter analysis by means of several tools and methods, like MSC.Nastran and ZONA commercial software as well as our own low-cost software named JG2 for the flutter analysis of low speed aeroplanes and for a preliminary analyses of other aircraft. The differences between the methods lie in determining normal mode set, unsteady aerodynamic model, flutter equation formulation, time of analysis, costs, etc. Examples with results comparison obtained by means of distinguished methods are presented. Some works in the field of aeroelastic analysis with nonlinear unsteady aerodynamic in the time domain using Tau-code and ANSYS Fluent software were also performed. Aeroelastic properties of deformed structures, like a sailplane with deflected wings, can be also analysed. The simplest way of this analysis is the semi-linear approach in which the deflections modify the aircraft geometry for normal modes determination.
Źródło:
Journal of KONES; 2018, 25, 4; 33-42
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Turbulent triggers and the model quality influence on aerodynamic characteristics of the laminar aerofoil in transonic flow regime
Autorzy:
Placek, Robert
Ruchała, Paweł
Powiązania:
https://bibliotekanauki.pl/articles/245279.pdf
Data publikacji:
2019
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
transonic flow
aerofoil
model quality
aerodynamic characteristics
shock wave
Opis:
The test with a roughness application on the laminar aerofoil has been conducted in the N-3 trisonic wind tunnel of the Institute of Aviation in Warsaw. The main goal of tests was to investigate the influence of the boundary layer transition triggers on a laminar profile aerodynamic characteristic. For baseline configuration, the natural transition was applied. As a local roughness on the upper model surface, the carborundum strips with different heights were applied. These were positioned on the upper model surface in the front of the shock position occurrence. The Mach number during test was equal Ma = 0.7 and Reynolds number was about 2.85·106 . Tests have been conducted for different model incidence in range 0º-7º. Current article refers partially to the previous study, where aerofoil model with lower quality of surface had been tested. Investigation results from previous work indicated that some of transition positions improved an aerodynamic characteristic by reducing the drag coefficient value and decreasing shock wave unsteadiness in the transonic regime. However, current article indicates that beneficial effects in respect to the baseline configuration are also strictly dependent on the model quality and turbulent triggers size. Improved surface quality of the laminar aerofoil model affected on aerodynamic characteristics with and without turbulent triggers. Resultant aerodynamic coefficients of all tested cases i.e. drag, lift and lift to drag ratio were compared.
Źródło:
Journal of KONES; 2019, 26, 3; 165-172
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies