Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Iskra, M." wg kryterium: Autor


Wyświetlanie 1-7 z 7
Tytuł:
Problems connected with the construction and the functioning of the prototype oxidising catalytic converter
Autorzy:
Kałużny, J.
Iskra, A.
Babiak, M.
Powiązania:
https://bibliotekanauki.pl/articles/247602.pdf
Data publikacji:
2010
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
oxidising catalytic converter
carbon nanotubes
Opis:
Nanomaterials and nanotubes represent a relatively new area of science and industrial practice. The authors of the article suggest replacing the standard washcoat of the catalytic converter and using the nanotubes, which is expected to substantially increasethe contact surface of the catalytic layer with the exhaust gases. The article presents the problems in constructing the prototype catalytic converter as well as solving them and the construction of the converter. The constructed prototype oxidising catalytic converter was constructed by covering the standard ceramic core with cell density equal to 400 cpsi. The layer of nanotubes with an extended surface contact with exhaust gases was covered with platinum in a much lower amount than in a standard converter. The prototype converter was assembled in the exhaust systems of modern, turbo-charged diesel engines. The converter was subject to preliminary research on the engine test bed and in the road test NEDC. The research outcomes of conversion of the prototype converter confirm the possibility of applying nanotubes in the atmosphere of exhaust gases. They also indicate that if the existing problems were solved, the converters built according to the prototype converters could be used on an industrial scale. The most significant problems to be solved can be observed in covering the core with the nanotubes layer of an organised spatial structure. Moreover, it is essential to obtain such features of the, platinum cluster which enable to lower the light-off temperature. An analysis of benefits resulting from applying the described prototype converter and possible technical solutions aiming to reduce the observed technical problems are included in the summary of the article.
Źródło:
Journal of KONES; 2010, 17, 4; 213-219
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The impact of microgeometry bearing surface of the piston on the parameters of oil film
Autorzy:
Wróblewski, E.
Iskra, A.
Babiak, M.
Powiązania:
https://bibliotekanauki.pl/articles/242986.pdf
Data publikacji:
2016
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
combustion engine
piston
friction losses
Opis:
The formation of oil film is possible under certain parameters of microgeometry cooperating components the main node of the internal combustion engine, which is a piston-pin-piston rings. In addition, this node is primarily responsible for the formation of mechanical losses. It is advisable to reduce friction losses in the piston-cylinder group lead to an increase in the overall efficiency of the engine and thus reduce the fuel consumption. One way of achieving these objectives is modification of microgeometry of the piston-bearing surface, which cooperates with the cylinder wall. The geometry of the gap between the piston skirt and the cylinder liner greatly affects the friction loss inside the engine. This means that the friction loss is much more affected by the area covered by the oil film separating the mating elements than its thickness. The method to reduce the area covered by the oil film is a modification of the bearing surface of the piston by adjusting the profile. The supporting surface, which performs a reciprocating motion relative to the strokes of the cylinder liner ensure the continuity of the oil film with the smallest possible value of the friction losses at the node piston-cylinder. This paper presents the results of simulation leading which aim to determining the parameters oil film on the friction loss for the modified bearing surface of the piston.
Źródło:
Journal of KONES; 2016, 23, 2; 431-436
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The investigation of experimental combustion engine elements conducted with use of atomic physics methods
Autorzy:
Kałużny, J.
Iskra, A.
Babiak, M.
Powiązania:
https://bibliotekanauki.pl/articles/243636.pdf
Data publikacji:
2015
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
combustion engine researches
carbon nanotubes
electron microscopy
Raman spectroscopy
Opis:
The authors put forward in earlier publications the concept of using carbon nanotubes (CNT) in order to improve the functional characteristics of selected structural components of internal combustion engines. The main goal of applying carbon nanotubes is to take advantage of its unique properties, which cannot be found among traditional construction materials, to reduce emissions and fuel consumption. To achieve this goal it is essential to come to know about elements and materials behaviour in specific application, for example piston or catalytic converter. In this article, selected methods in the field of atomic physics applied to the study of experimental engine components produced using nanotechnology are presented. For example, the electron microscopy in conjunction with registration of the characteristic X-ray and Raman spectroscopy were used. These test methods are improving the knowledge of the properties and design of pistons and catalytic converters with surface coated with multi-walled carbon nanotubes. The results of elements surface analysis, which were diverted from the engines after a series of test stand investigations, offer insight into the processes that take place in layers of carbon nanotubes in actual engine operating conditions. The knowledge gained with application of atomic physics methods allows achieving further improvement of carbon nanotubes layers and its functional characteristics.
Źródło:
Journal of KONES; 2015, 22, 4; 147-154
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Geometric shape of the support surface of the piston
Autorzy:
Iskra, A.
Babiak, M.
Wróblewski, E.
Powiązania:
https://bibliotekanauki.pl/articles/243151.pdf
Data publikacji:
2015
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
combustion engine
piston
friction losses
Opis:
Geometry of the slot between piston bearing surface and cylinder bore affects the friction losses of the IC engine to the far extent. It appears that these losses depend more on the area covered with oil than the thickness of oil layer separating collaborating parts. Barrel-shaped or stepwise piston bearing surface is the way to reduce the oil-covered area. The first concept has been used for years while the stepwise profile has not been applied for various reasons, although this idea providing higher load capacity of oil layer in stepwise slot was published in literature in the fifties of twentieth century. The stepwise profile can be obtained covering the cylindrical or tapered piston-bearing surface with a thin layer graphite. This paper presents the results of simulation leading to the reduction in friction losses and abrasive wear of piston bearing surface and cylinder bore. Covering the piston bearing surface with a thin layer of graphite one can get an extremely advantageous tribological properties of the piston assembly which means the expected parameters of oil film and in a case of film rupture – an ignorable abrasive wear of the graphite layer and/or cylinder bore.
Źródło:
Journal of KONES; 2015, 22, 4; 95-101
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The properties of damping vibrations by a layer of carbon nanotubes on the lateral surface of a piston
Autorzy:
Iskra, A.
Babiak, M.
Kałużny, J.
Giersig, M.
Kempa, K.
Powiązania:
https://bibliotekanauki.pl/articles/246598.pdf
Data publikacji:
2013
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
carbon nanotubes
combustion engine
friction losses
vibrations
Opis:
As a result of applying the hydrodynamic lubrication theory in the piston-cylinder group of a combustion engine, the authors have obtained the opportunity for practical elimination of abrasion of this unit. However, it turns out that in the case of the engine start, especially after a longer standstill and before the oil film is formed, the piston lateral surface’s micro-roughness comes into direct contact with the cylinder bearing surface. For this reason, manufacturers more and more commonly apply a special layer on the lateral surface of a piston, which decreases the friction force and eliminates very damaging effects of the so-called semi-dry friction. It turns out that applying an enriching layer on the lateral surface of the piston may result in an additional effect, which is not usually associated with the pistoncylinder unit. This effect is the damping of torsional vibrations. Thus, despite the seemingly insignificant properties of materials which the elements of the kinematic pair are made of, as a result of the occurrence of the layer with specific properties on these elements, one may find that these layers – even when they are separated by the oil film – can change the parameters of collaboration of the elements of the kinematic pair. In particular, it concerns generating and damping vibrations, and in such circumstances frictional losses may also be subject to change, which is the main domain of the conducted research presented in this paper. The article analyzes various effects which are caused by applying a special layer formed of carbon nanotubes (NCT in short) on the lateral surface of the piston.
Źródło:
Journal of KONES; 2013, 20, 3; 177-184
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Comparing the resistance to motion of pistons coated with a layer of nanotubes with standard pistons
Autorzy:
Iskra, A.
Babiak, M.
Kałużny, J.
Giersig, M.
Kempa, K.
Powiązania:
https://bibliotekanauki.pl/articles/247841.pdf
Data publikacji:
2012
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
friction in internal combustion engine
nanotubes layers
Opis:
The paper presents preliminary results of testing the resistance to motion of pistons coated with a layer of carbon nanotubes (CNTs). A significant part of this paper was devoted to the problems of putting a layer of nanotubes on the surface of an aluminum alloy. Obtaining a layer of nanotubes of a very narrow margin of tolerance was a difficult technological problem to overcome. A standard process of growing a layer of nanotubes leads to a corrosion damage of the side surface of pistons; therefore, new technologies were developed allowing for obtaining a permanent layer of nanotubes less than 5 microns thick. Pistons whose side surfaces were coated with a layer of nanotubes were mounted to an engine with an external drive, and then measurements of the moment of momentary resistance to motion were performed, which enables capturing these phases of the engine work cycles in which the layer of nanotubes gives the best results. At present, long-term research is being carried out in order to determine the degree of the risk of exfoliation of the layer of nanotubes under the conditions of large mechanical and thermal loads. The special nanotechnology method cold nanosphere lithography has been invested to control the structural properties sand growth of multiwalled carbon nanotubes. The preliminary analysis of dismantled pistons revealed that nanotubes layers were partially worn off at the peaks of micro roughness but in the valleys, the nanotubes accurately adhered to the piston lateral surface.
Źródło:
Journal of KONES; 2012, 19, 2; 227-233
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The oil film parameters of the wankel engine apex seal in aspects of durability of mating elements
Autorzy:
Iskra, A.
Babiak, M.
Kałużny, J.
Marszałkowski, K.
Powiązania:
https://bibliotekanauki.pl/articles/247572.pdf
Data publikacji:
2010
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
combustion engines
Wankel engine
apex seal
oil film parameters
Opis:
The Wankel engine is one of only few alternatives to the reciprocating engines. The advantages such as good value of maximum engine power to its mass ratio are still present and can have great sense in selected fields of application, for example General Aviation. Nevertheless the disadvantages of the Wankel engine design have never lost its importance and still pose an obstacle to wider use of the Wankel engine. One of the main drawbacks is the rotor sealing system design, especially the apex seal where single siat has to fulfil a purpose of conventional engine piston rings pack. Moreover the unfavourable changes of the apex seal angle of attack causes that optimal shape of the apex seal sliding surface, in aspects of the oil film parameters, can not be achieved. These results in worsening of apex seal elements mating conditions, reducing its effectiveness and durability. In the paper authors present results of simulation researches where oil film parameters, for example oil film thickness, which determines apex seal durability, were obtained for different engine operating conditions and various shapes of apex seal sliding surface geometry. The results indicate possible directions during apex seal designing process which should provide oil film continuity in whole rotor angle position range and for wide engine operation conditions range.
Źródło:
Journal of KONES; 2010, 17, 4; 199-206
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-7 z 7

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies