Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Hybrid learning" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
A novel framework for fetal nuchal translucency abnormality detection using hybrid maxpool matrix histogram analysis
Autorzy:
Verma, Deept
Agrawal, Shweta
Powiązania:
https://bibliotekanauki.pl/articles/38703226.pdf
Data publikacji:
2023
Wydawca:
Instytut Podstawowych Problemów Techniki PAN
Tematy:
nuchal translucency
genetic disorders
hybrid maxpool matrix histogram analysis
pregnant women
machine learning
przezierność karku
zaburzenia genetyczne
analiza histogramu hybrydowej macierzy Maxpool
kobiety w ciąży
nauczanie maszynowe
Opis:
Birth defects affect 1 to 3 percent of the population and are mostly detected in pregnantwomen through double, triple, and quadruple testing. Ultrasonography helps to discoverand define such anomalies in fetuses. Ultrasound pictures of nuchal translucency (NT)are routinely used to detect genetic disorders in fetuses. The NT area lacks identifiablelocal behaviors and detection algorithms are required to classify the fetal head. On theother hand, explicit identification of other body parts comes at a higher cost in termsof annotations, implementation, and analysis. In circumstances of ambiguous head placement or non-standard head-NT relationships, it may potentially cause cascading errors.In this research work, a linear contour size filter is used to decrease noise from the image,and then the picture is scaled. Then, a novel hybrid maxpool matrix histogram analysis (HMMHA) is proposed to enhance the initiation and progression. The training andassessment were conducted using a dataset of 33 ultrasound pictures. Extensive testingshows that the direct method reliably identifies and measures NT. The suggested modelmay assist doctors in making decisions about pregnancies with fetal growth restriction,particularly for patients who have nuchal translucency or congenital anomalies and donot require induced labor due to these abnormalities. The performance of the proposedtechnique is analyzed in terms of error rate, sensitivity, Matthews correlation coefficient(MCC), accuracy, precision, recall, and F1-score. The error rate of the proposed model is28.21% and it is found to be better when compared with the conventional approaches. Finally, the error prediction is compared with the existing models obtained from the medicaldataset of pregnant women to identify fetal abnormality positions.
Źródło:
Computer Assisted Methods in Engineering and Science; 2023, 30, 3; 277-290
2299-3649
Pojawia się w:
Computer Assisted Methods in Engineering and Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Hybrid deep learning method for detection of liver cancer
Autorzy:
Deshmukh, Sunita P.
Choudhari, Dharmaveer
Amalraj, Shankar
Matte, Pravin N.
Powiązania:
https://bibliotekanauki.pl/articles/38701864.pdf
Data publikacji:
2023
Wydawca:
Instytut Podstawowych Problemów Techniki PAN
Tematy:
liver cancer detection
deep learning
fully convolutional neural network
hybrid approach
discrete wavelet transform
wykrywanie raka wątroby
uczenie głębokie
neuronowa sieć konwulcyjna
podejście hybrydowe
dyskretna transformata falkowa
Opis:
Liver disease refers to any liver irregularity causing its damage. There are several kinds of liver ailments. Benign growths are rarely life threatening and can be removed by specialists. Liver malignant tumor is leading causes of cancer death. Identifying malignant growth tissue is a troublesome and tedious task. There is significantly less information and statistical analysis presented related to cholangiocarcinoma and hepatoblastoma. This research focuses on the image analysis of these two types of cancer. The framework’s performance is evaluated using 2871 images, and a dual hybrid model is used to accomplish superb exactness. The aftereffects of both neural networks are sent into the result prioritizer that decides the most ideal choice for image arrangement. The relevance of elements appears to address the appropriate imaging rules for each class, and feature maps matching the original picture voxel features. The significance of features represents the most important imaging criteria for each class. This deep learning system demonstrates the concept of illuminating elements of a pre-trained deep neural network’s decision-making process by an examination of inner layers and the description of attributes that contribute to predictions.
Źródło:
Computer Assisted Methods in Engineering and Science; 2023, 30, 2; 151-165
2299-3649
Pojawia się w:
Computer Assisted Methods in Engineering and Science
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies