Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Wang, X. P." wg kryterium: Autor


Wyświetlanie 1-5 z 5
Tytuł:
A screw dislocation located outside, inside or on the interface of a parabolic elastic inhomogeneity
Autorzy:
Wang, X.
Schiavone, P.
Powiązania:
https://bibliotekanauki.pl/articles/38627364.pdf
Data publikacji:
2021
Wydawca:
Instytut Podstawowych Problemów Techniki PAN
Tematy:
screw dislocation
parabolic elastic inhomogeneity
superposition
conformal mapping
analytic continuation
Opis:
Using conformal mapping techniques, superposition and analytic continuation, we derive analytic solutions to the problem of a screw dislocation interacting with a parabolic elastic inhomogeneity. The screw dislocation can be located anywhere either in the surrounding matrix or in the parabolic inhomogeneity or simply on the parabolic interface itself. We obtain explicit expressions for the two analytic functions in the image plane characterizing the elastic fields describing displacement and stresses in the two-phase composite. Using the Peach-Koehler formula, we also obtain the image force acting on the screw dislocation. The analytic function defined in the parabolic inhomogeneity in the physical plane can be interpreted in terms of real and image screw dislocations for any location of the real screw dislocation.
Źródło:
Archives of Mechanics; 2021, 73, 3; 219-235
0373-2029
Pojawia się w:
Archives of Mechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Uniformity of electroelastic field within a three-phase anisotropic piezoelectric elliptical inhomogeneity in anti-plane shear
Autorzy:
Wang, X.
Schiavone, P.
Powiązania:
https://bibliotekanauki.pl/articles/38694715.pdf
Data publikacji:
2022
Wydawca:
Instytut Podstawowych Problemów Techniki PAN
Tematy:
three-phase elliptical inhomogeneity
confocal ellipses
monoclinic piezoelectric material
transversely isotropic piezoelectric material
Stroh quartic formalism
real-form solution
Opis:
Using the Stroh quartic formalism, we prove that the internal electroelastic field is unconditionally uniform inside a three-phase anisotropic piezoelectric elliptical inhomogeneity with two confocal elliptical interfaces when the surrounding matrix is subjected to uniform remote anti-plane mechanical and in-plane electrical loading. The inhomogeneity and the matrix comprise monoclinic piezoelectric materials with symmetry plane at x3 = 0 and with poling in the x3-direction; the intermediate interphase layer is a transversely isotropic piezoelectric material with poling in the x3-direction. Moreover, we obtain the internal uniform electroelastic field inside the elliptical inhomogeneity and the non-uniform electroelastic field in the interphase layer in real-form in terms of the fundamental piezoelectricity matrices for both the inhomogeneity and the matrix and the generalized Barnett–Lothe tensors for both the interphase layer and the matrix.
Źródło:
Archives of Mechanics; 2022, 74, 2-3; 143-156
0373-2029
Pojawia się w:
Archives of Mechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Three-phase parabolic inhomogeneities with internal uniform stresses in plane and anti-plane elasticity
Autorzy:
Wang, X.
Schiavone, P.
Powiązania:
https://bibliotekanauki.pl/articles/38442156.pdf
Data publikacji:
2020
Wydawca:
Instytut Podstawowych Problemów Techniki PAN
Tematy:
three-phase parabolic inhomogeneity
coating
internal uniform stresses
plane elasticity
anti-plane elasticity
Opis:
We examine the in-plane and anti-plane stress states inside a parabolic inhomogeneity which is bonded to an infinite matrix through an intermediate coating. The interfaces of the three-phase parabolic inhomogeneity are two confocal parabolas. The corresponding boundary value problems are studied in the physical plane rather than in the image plane. A simple condition is found that ensures that the internal stress state inside the parabolic inhomogeneity is uniform and hydrostatic. Furthermore, this condition is independent of the elastic properties of the coating and the two geometric parameters of the composite: in fact, the condition depends only on the elastic constants of the inhomogeneity and the matrix and the ratio between the two remote principal stresses. Once this condition is met, the mean stress in the coating is constant and the hoop stress on the coating side is also uniform along the entire inhomogeneity-coating interface. The unconditional uniformity of stresses inside a three-phase parabolic inhomogeneity is achieved when the matrix is subjected to uniform remote anti-plane shear stresses. The internal uniform anti-plane shear stresses inside the inhomogeneity are independent of the shear modulus of the coating and the two geometric parameters of the composite.
Źródło:
Archives of Mechanics; 2020, 72, 1; 27-38
0373-2029
Pojawia się w:
Archives of Mechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Uniform stress field inside a non-parabolic open inhomogeneity interacting with a mode III crack
Autorzy:
Wang, X.
Schiavone, P.
Powiązania:
https://bibliotekanauki.pl/articles/38612202.pdf
Data publikacji:
2021
Wydawca:
Instytut Podstawowych Problemów Techniki PAN
Tematy:
non-parabolic inhomogeneity
mode III crack
uniform stress field
antiplane elasticity
conformal mapping
singular integral equation
Opis:
Using conformal mapping techniques, analytic continuation and the theory of Cauchy singular integral equations, we prove that a non-parabolic open inhomogeneity embedded in an elastic matrix subjected to a uniform remote anti-plane stress nevertheless admits an internal uniform stress field despite the presence of a finite mode III crack in its vicinity. Our analysis indicates that: (i) the internal uniform stress field is independent of the specific shape of the inhomogeneity and the presence of the finite crack; (ii) the existence of the finite crack plays a key role in the non-parabolic open shape of the inhomogeneity and in the non-uniform stresses in the surrounding matrix; (iii) the two-term asymptotic expansion at infinity of the stress field in the matrix is independent of the presence of the finite crack. Detailed numerical results are presented to demonstrate the proposed theory.
Źródło:
Archives of Mechanics; 2021, 73, 1; 67-81
0373-2029
Pojawia się w:
Archives of Mechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Uniform field within a non-elliptical inhomogeneity in the vicinity of a nearby non-circular Eshelby inclusion
Autorzy:
Wang, X.
Schiavone, P.
Powiązania:
https://bibliotekanauki.pl/articles/38629511.pdf
Data publikacji:
2021
Wydawca:
Instytut Podstawowych Problemów Techniki PAN
Tematy:
non-elliptical inhomogeneity
Booth’s lemniscate inclusion
uniform field
conformal mapping
anti-plane elasticity
inverse problem
Opis:
We rigorously prove that a non-elliptical inhomogeneity continues to permit an internal uniform stress field despite the presence of a nearby non-circular Eshelby inclusion undergoing uniform anti-plane eigenstrains when the surrounding matrix is subjected to uniform remote anti-plane stresses. Here, we adopt a specific representation of the non-circular Eshelby inclusion as a Booth’s lemniscate inclusion. Our analysis indicates that the internal uniform stress field inside the non-elliptical inhomogeneity is independent of the existence of the Booth’s lemniscate inclusion whereas the non-elliptical shape of the inhomogeneity is attributed entirely to its presence. Representative numerical examples are presented to demonstrate the feasibility of the proposed method of general solution.
Źródło:
Archives of Mechanics; 2021, 73, 5-6; 541-555
0373-2029
Pojawia się w:
Archives of Mechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-5 z 5

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies