Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Kumar, J." wg kryterium: Autor


Wyświetlanie 1-2 z 2
Tytuł:
Numerical study on two dimensional distribution of streamwise velocity in open channel turbulent flows with secondary current effect
Autorzy:
Mohan, S.
Kundu, S.
Ghoshal, K.
Kumar, J.
Powiązania:
https://bibliotekanauki.pl/articles/38616700.pdf
Data publikacji:
2021
Wydawca:
Instytut Podstawowych Problemów Techniki PAN
Tematy:
velocity distribution
open channel flow
turbulent flow
RANS equations
secondary current
finite difference method
Opis:
For studying mechanism of sediment transport in river flows, open channel flow is a prototype. Flow has always three components of velocity for all types of channel geometry and for a time independent uniform flow along streamwise or main flow direction, all the components of velocity are functions of lateral and vertical coordinates. The present study investigates the two dimensional distribution of streamwise (or longitudinal) velocity starting from the Reynolds averaged Navier–Stokes equation for a turbulent open channel flow which is steady and uniform along the main flow direction. Secondary flows both along the vertically upward direction and along the lateral direction are considered which are also taken as functions of lateral and vertical coordinates. Inclusion of the secondary current brings the effect of dip phenomenon in the model. The resulting second order partial differential equation is solved numerically. The model is validated for all the cross-sectional, transverse and centreline velocity distribution by comparing with existing relevant set of experimental data and also with an existing model. Comparison results show good agreement with data as well as with the previous model proving the efficiency of the model. It is found that the transverse velocity distribution depends on the formation of circular vortex in the cross-sectional plane and becomes periodic as the number of circular vortex increases for increasing aspect ratios.
Źródło:
Archives of Mechanics; 2021, 73, 2; 175-200
0373-2029
Pojawia się w:
Archives of Mechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Applicability of artificial intelligence in smart healthcare systems for automatic detection of Parkinson’s Disease
Autorzy:
Pallathadka, Harikumar
Padminivalli V., S.J.R.K.
Vasavi, M.
Nancy, P.
Naved, Mohd
Kumar, Harish
Ray, Samrat
Powiązania:
https://bibliotekanauki.pl/articles/38709253.pdf
Data publikacji:
2024
Wydawca:
Instytut Podstawowych Problemów Techniki PAN
Tematy:
Parkinson’s disease
detection
machine learning
relief algorithm
LDA algorithm
SVM-RBF
accuracy
sensitivity
specificity
choroba Parkinsona
wykrywanie
nauczanie maszynowe
algorytm ulgi
Algorytm LDA
dokładność
wrażliwość
specyficzność
Opis:
Parkinson’s disease is associated with memory loss, anxiety, and depression in the brain. Problems such as poor balance and difficulty during walking can be observed in addition to symptoms of impaired posture and rigidity. The field dedicated to making computers capable of learning autonomously, without having to be explicitly programmed, is known as machine learning. An approach to the diagnosis of Parkinson’s disease, which is based on artificial intelligence, is discussed in this article. The input for this system is provided through photographic examples of Parkinson’s disease patient handwriting. Received photos are preprocessed using the relief feature option to begin the process. This is helpful in the process of selecting characteristics for the identification of Parkinson’s disease. After that, the linear discriminant analysis (LDA) algorithm is employed to reduce the dimensions, bringing down the total number of dimensions that are present in the input data. The photos are then classified via radial basis function-support vector machine (SVM-RBF), k-nearest neighbors (KNN), and naive Bayes algorithms, respectively.
Źródło:
Computer Assisted Methods in Engineering and Science; 2024, 31, 2; 175-185
2299-3649
Pojawia się w:
Computer Assisted Methods in Engineering and Science
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies