Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "GAs" wg kryterium: Temat


Tytuł:
Analiza aktualnego stanu zasobów gazu ziemnego znajdujących się w złożach krajowych oraz prognoza krajowego wydobycia gazu do roku 2030
Analysis of the current state of natural gas resources in domestic deposits and a forecast of domestic gas production until 2030
Autorzy:
Piesik-Buś, Wacława
Filar, Bogdan
Powiązania:
https://bibliotekanauki.pl/articles/2143638.pdf
Data publikacji:
2021
Wydawca:
Instytut Nafty i Gazu - Państwowy Instytut Badawczy
Tematy:
gaz ziemny
wydobycie gazu
zasoby gazu
prognoza
złoża gazu
natural gas
gas production
natural gas reserves
forecast
gas fields
Opis:
Gaz ziemny jest podstawowym paliwem energetycznym w gospodarce światowej. Zgodnie z informacją opublikowaną przez Polskie Górnictwo Naftowe i Gazownictwo SA w dokumencie Prezentacja Spółki – zużycie gazu w 2018 roku wyniosło 19,7 mld m3 . W związku z tym, że stopień czerpania krajowych złóż gazu ziemnego jest coraz większy, zapotrzebowanie na gaz ziemny będzie zaspokajane przez rosnący import. Bilansowanie krajowego zapotrzebowania na gaz będzie wymagało precyzyjnej znajomości wielkości krajowej produkcji gazu ziemnego. Z drugiej strony Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy co roku publikuje Bilans zasobów złóż kopalin w Polsce. Zgodnie z publikacją dotyczącą stanu zasobów na dzień 31.12.2018 r. w Polsce udokumentowano 298 złóż gazu ziemnego, na Bałtyku – 5, w Karpatach – 35, na przedgórzu Karpat (dalej: Przedgórze) – 105 oraz na Niżu Polskim (dalej: Niż) – 153. Bilans przedstawiony przez PIG – BIP za rok 2018 wykazał stan wydobywalnych zasobów gazu ziemnego w wielkości 139,93 mld m3 (łącznie zasoby bilansowe i pozabilansowe). Wielkość zasobów przemysłowych złóż gazu ziemnego na dzień 31.12.2018 r. wyniosła 66,64 mld m3 . Należy podkreślić, że wszystkie dane w Bilansie zasobów złóż i kopalin w Polsce podawane są w normalnych metrach sześciennych. W związku z tym dane publikowane przez PIG – BIP nie uwzględniają rzeczywistej kaloryczności gazu ziemnego wydobywanego z różnych złóż. Począwszy od roku 2014 w Polsce podstawową jednostką rozliczeniową jest jednostka energii (kWh). Wprowadzenie rozliczenia w jednostkach energii spowodowało, że wartość 1 m3 gazu zaazotowanego wydobywanego ze złóż znajdujących się na Niżu jest niższa od wartości gazu wydobywanego ze złóż Przedgórza i Karpat. Średnia kaloryczność gazu wydobywanego ze złóż Niżu wynosi około 8,0 kWh/m3 , natomiast ze złóż Przedgórza – 11,2 kWh/m3 . Głównym celem niniejszej pracy było wykonanie prognozy wydobycia gazu ze złóż krajowych na podstawie publikowanego przez PIG – BIP Bilansu zasobów złóż kopalin w Polsce. Prognozę wydobycia gazu z krajowych złóż przygotowano dla lat 2020–2030, dla każdego rejonu gazonośnego oddzielnie. W celu dostosowania wielkości raportowanych do obowiązujących jednostek energii prognoza wydobycia gazu wykonana dla złóż obszaru Niżu została przeliczona na wydobycie gazu wysokometanowego.
Natural gas is the basic fossil fuel in the global economy. According to the information published by Polskie Górnictwo Naftowe i Gazownictwo SA in the document Company Presentation, gas consumption in 2018 amounted to 19.7 billion m3 . Due to the fact that the domestic reserves of natural gas are increasingly depleted, the demand for natural gas will be satisfied by growing imports. Balancing gas demand will require precise knowledge of the volume of domestic natural gas production. On the other hand, every year the Polish Geological Institute – National Research Institute (PIG – BIP) publishes Balance of mine resources in Poland. According to the publication on the state of resources as of December 31, 2018, 298 natural gas fields have been documented in Poland, 5 in the Baltic Sea region, 35 in Carpathians, 105 in Carpathian Foreland and 153 in Polish Lowland. The balance presented by PIG – BIP for 2018 showed the state of natural gas contingent resources in the amount of 139.93 billion m3 (total balance resources). The volume of industrial reserves of natural gas deposits as at December 31, 2018 was 66.64 billion m3 . It should be emphasized that all data published in the Balance of mine resources in Poland are given in normal cubic meters. Therefore, the data published by PIG – BIP do not take into account the actual calorific value of natural gas produced from various fields. Starting from 2014, the basic accounting unit in Poland is the energy unit (kWh). Due to the introduction of the settlement in energy units, the value of 1 m3 of nitrogen-rich gas produced from the fields located in the Lowland region is lower than the value of gas produced from the Carpathian Foreland fields and the Carpathians. The average calorific value of gas produced from the Lowland fields is about 8.0 kWh/m3 , while the average calorific value of gas produced from the rest of the Foreland is about 11.2 kWh/m3 . The main goal of this article was to make a forecast of gas production from domestic deposits based on the Balance of mine resources in Poland published by the Polish Geological Institute –National Research Institute. The forecast of gas extraction from domestic deposits was made for the years 2020–2030. The production forecast was prepared for each gas-bearing region separately. In order to adjust the reported volumes to the applicable energy units, the gas production forecast for the Lowland fields was converted into high-methane gas production.
Źródło:
Nafta-Gaz; 2021, 77, 6; 376-382
0867-8871
Pojawia się w:
Nafta-Gaz
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Nielegalny pobór gazu – ogólna charakterystyka
Illegal gas consumption – general characteristics
Autorzy:
Kułaga, Paweł
Powiązania:
https://bibliotekanauki.pl/articles/2145792.pdf
Data publikacji:
2021
Wydawca:
Instytut Nafty i Gazu - Państwowy Instytut Badawczy
Tematy:
nierozliczone ilości gazu
nielegalny pobór gazu
kradzież gazu
gazomierz
gazomierz inteligentny
unaccounted-for gas lost
illegal gas consumption
gas theft
gas meter
smart gas meter
Opis:
Rozliczeniom gazowym zawsze towarzyszy powstawanie nierozliczonych ilości gazu, które muszą być brane pod uwagę przez operatorów gazowniczych. Kradzieże gazu są jednym ze źródeł nierozliczonych ilości gazu w obszarze dystrybucji gazu i mogą obejmować nawet do kilku procent przychodów z dostawy gazu. Operator powinien posiadać skuteczne narzędzia do przeciwdziałania kradzieżom, zarówno poprzez ich wykrywanie, jak i przeciwdziałanie. Przedsiębiorstwa gazownicze starają się przeciwdziałać kradzieżom gazu i je wykrywać, stosując różne metody. Jedną z nich jest ciągła kontrola zużycia gazu w poszczególnych punktach poboru gazu. Operator gazowniczy może w ten sposób minimalizować straty gazu wynikające z użytkowania wadliwych gazomierzy oraz straty gazu powstałe w wyniku nieszczelności spowodowanych przez osoby trzecie. Zastosowanie technologii komunikacji bezprzewodowej w urządzeniach pomiarowych i połączenie gazomierzy w sieci komunikacyjne umożliwia monitorowanie gazomierzy i dynamiczne przesyłanie danych z urządzeń pomiarowych. Każda ingerencja osób niepowołanych w sieć gazową, instalację gazową czy też w układ pomiarowy może stwarzać zagrożenie dla życia i zdrowia ludzkiego, a nielegalny pobór paliwa gazowego jest zabroniony i podlega egzekucji karnej. Kwestie nielegalnego pobierania gazu zostały określone w polskim prawie przede wszystkim w ustawie Prawo energetyczne oraz w rozporządzeniach: w sprawie przeprowadzania kontroli przez przedsiębiorstwa energetyczne, w sprawie ustalenia zakresu i wysokości opłat za nielegalny pobór paliw gazowych oraz w sprawie szczegółowych warunków funkcjonowania systemu gazowego. Najpowszechniej stosowanym gazomierzem do pomiaru objętości zużywanego gazu w gospodarstwach domowych jest gazomierz miechowy, który zwykle wyposażony jest w liczydło mechaniczne, ale w ostatnim czasie coraz bardziej rozpowszechnia się stosowanie liczydeł elektronicznych. W publikacji określono kilka podstawowych rodzajów ingerencji w gazomierze miechowe domowe, w tym w układ pomiaru, w układ rejestracji, poprzez oddziaływanie magnesami neodymowymi, jak również poprzez ominięcie urządzenia pomiarowego. Najpowszechniejszymi są ingerencje poprzez uszkodzenie plomb zabezpieczających i demontaż liczydła gazomierza, a następnie zmianę wskazania lub ingerencje, które powodują fałszowanie wskazań. Zwrócono uwagę, że istotnymi czynnikami w ograniczaniu nielegalnego poboru gazu w wyniku ingerencji w urządzenia pomiarowe są skuteczna kontrola poboru gazu oraz zapewnienie właściwej konstrukcji gazomierzy, w tym wyposażenie ich w liczydło elektroniczne z komunikacją zdalną.
Gas billing is always accompanied by unaccounted-for gas loss (UAG) which must be taken into account by gas operators. Gas theft is one of the sources of UAG in the gas distribution area and can be as high as several percent of revenues from gas supplies. The operator should have effective tools to prevent theft, both by detecting and combatting it. Gas companies try to prevent and detect gas theft using various methods. One of them is the continuous control of gas consumption at individual gas consumption points. The gas operator can thus minimize gas losses due to the use of faulty gas meters and gas losses due to leaks caused by third parties. The use of wireless communication technology in measuring devices and the connection of gas meters in smart networks enables the monitoring of gas meters and dynamic data transfer from the measuring devices. Any unauthorized interference with the gas network, gas installation or measurement system may pose a threat to human life and health, and illegal consumption of gaseous fuel is prohibited and is subject to criminal enforcement. The issues of illegal gas consumption have been defined in Polish law, first of all in the Energy Law, and in regulations concerning inspections by energy companies, on determining the scope and amount of fees for illegal consumption of gaseous fuels, and on detailed conditions for the operation of the gas system. The most widely used gas meter for measuring the volume of gas consumed in households is the diaphragm gas meter, which is usually equipped with a mechanical index, but in recent times the use of an electronic index has become more and more popular. The publication specifies several basic types of interference with household diaphragm gas meters, including the measurement system, the index, through the interaction with neodymium magnets, as well as by bypassing the measuring device. The most common are interventions by damaging the security seals and disassembling the gas meter index, followed by a change of indication or tampering resulting in false readings. It has been pointed out that the basic factor for limiting illegal gas consumption as a result of manipulation with the measuring device is ensuring the proper construction of gas meters, including equipping the gas meters with an electronic index with remote communication.
Źródło:
Nafta-Gaz; 2021, 77, 4; 270-278
0867-8871
Pojawia się w:
Nafta-Gaz
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An analysis of the effects of hydrogen addition to natural gas on the work of gas appliances
Analiza wpływu dodatku wodoru do gazu ziemnego na pracę urządzeń gazowych
Autorzy:
Wojtowicz, Robert
Powiązania:
https://bibliotekanauki.pl/articles/1835084.pdf
Data publikacji:
2019
Wydawca:
Instytut Nafty i Gazu - Państwowy Instytut Badawczy
Tematy:
hydrogen
natural gas
Power to gas
wodór
gaz ziemny
Opis:
Investigation results of hydrogen addition to natural gas 2E on the work of selected gas appliances for both domestic (gas hob with burners equipped with adjustable combustion air aperture, gas-fired air heaters for space heating, air heater type balanced flue, gas fireplace) and commercial (gas stock pot range, gas-fired overhead luminous radiant heater) use have been presented in this paper. A brief description of gas appliances chosen for testing has been given. Gas burners and automation installed in the above mentioned appliances were prepared for natural gas combustion. The tests were carried out with three mixtures of natural gas with 10%, 15% and 23% of hydrogen. Approximate compositions of gases used in the tests and their energy parameters were provided. The following parameters were checked: combustion quality, ignition, cross lighting and flame stability, nominal heat input and thermal efficiency. The results obtained for each device, with consideration of all tested operational and safety parameters, were discussed. When analyzing the results, special attention was given to the matter of heat input of appliances, lowering with decreasing energy parameters of particular gases with hydrogen addition and to the effect of the above on thermal efficiency of the appliance tested. The results were presented on diagrams. The conclusions were formulated considering why, depending on the construction of a particular appliance, the decrease in heat input differently effected its thermal efficiency. By basing on the obtained results the following questions were answered: • Whether the safe and proper operation of domestic appliances might not be affected by hydrogen addition to natural gas; • What amount of hydrogen could be added to natural gas in order to ensure safe and not requiring any modification operation of appliances adapted to natural gas combustion.
W artykule przedstawiono wyniki badania wpływu dodatku wodoru do gazu ziemnego wysokometanowego 2E na pracę wybranych domowych urządzeń gazowych (płyta gazowa z palnikami wyposażonymi w regulowaną przysłonę powietrza do spalania, gazowa nagrzewnica powietrza do ogrzewania pomieszczeń, ogrzewacz powietrza typu balanced flue, kominek gazowy) oraz urządzeń do zastosowań komercyjnych (taboret gazowy oraz promiennik gazowy). W artykule podano krótką charakterystykę wytypowanych do badań urządzeń gazowych. Palniki gazowe oraz automatyka zainstalowane w wyżej wymienionych urządzeniach przystosowane były do spalania gazu ziemnego wysokometanowego. Badania przeprowadzono z wykorzystaniem trzech mieszanin gazu ziemnego wysokometanowego z wodorem o zawartości wodoru odpowiednio: 10%, 15% i 23%. Podano przybliżone składy gazów użytych w badaniach oraz ich parametry energetyczne. Na wybranych do badań urządzeniach sprawdzano takie parametry urządzeń jak: jakość spalania, zapalanie, przenoszenie i stabilność płomienia, znamionowe obciążenie cieplne oraz sprawność cieplna. Wyniki badań uzyskane dla każdego urządzenia omówiono odnosząc się do wszystkich sprawdzanych parametrów użytkowych i bezpieczeństwa. Analizując wyniki badań, szczegółowo poruszono kwestię obniżenia się obciążenia cieplnego urządzeń w miarę spadku parametrów energetycznych poszczególnych gazów z dodatkiem wodoru i wpływ tego zjawiska na uzyskiwaną sprawność cieplną przez badane urządzenia. Otrzymane wyniki badań zobrazowano na wykresach. Sformułowano także wnioski na temat tego, dlaczego w zależności od konstrukcji urządzenia spadek obciążenia cieplnego ma różny wpływ na osiąganą przez urządzenie sprawność cieplną. Na podstawie uzyskanych wyników udzielono odpowiedzi na pytania: • czy dodatek wodoru do gazu ziemnego nie wpłynie na prawidłową i bezpieczną pracę urządzeń gazowych użytku domowego; • jaką ilość wodoru można zatłoczyć do gazu ziemnego wysokometanowego, aby urządzenia przystosowane do spalania gazu ziemnego pracowały bezpiecznie bez potrzeby ich modyfikacji.
Źródło:
Nafta-Gaz; 2019, 75, 8; 465-472
0867-8871
Pojawia się w:
Nafta-Gaz
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wybrane zagadnienia dotyczące wpływu dodatku wodoru do gazu ziemnego na elementy systemu gazowniczego
Selected issues concerning the impact of hydrogen addition to natural gas on the gas network components
Autorzy:
Jaworski, Jacek
Kukulska-Zając, Ewa
Kułaga, Paweł
Powiązania:
https://bibliotekanauki.pl/articles/1834960.pdf
Data publikacji:
2019
Wydawca:
Instytut Nafty i Gazu - Państwowy Instytut Badawczy
Tematy:
power-to-gas
PtG
P2G
wodór ze źródeł odnawialnych
gaz ziemny
infrastruktura gazociągowa
urządzenia gazowe
Power-to-Gas
renewable hydrogen
natural gas
gas pipeline infrastructure
gas appliances
Opis:
W ostatnim czasie można zaobserwować rosnące zainteresowanie dodawaniem do sieci gazowej wodoru pochodzącego ze źródeł odnawialnych, tzn. technologią power-to-gas. Umożliwia ona przekształcenie wyprodukowanej energii elektrycznej do postaci wodoru i zmagazynowanie go w systemie gazowniczym. Technologia ta może stać się jednym z istotnych czynników zwiększenia udziału energii odnawialnej w całkowitym bilansie energetycznym. Skutkiem dodawania wodoru do gazu ziemnego będzie obecność w sieciach gazowych mieszaniny gazu ziemnego oraz wodoru, która siecią tą docierać będzie do odbiorców końcowych, w tym odbiorców w gospodarstwach domowych. Właściwości fizykochemiczne wodoru, takie jak np. gęstość właściwa czy lepkość, istotnie różnią się od właściwości fizykochemicznych składników gazu ziemnego, takich jak metan, etan, propan, butan, azot itd. W związku z powyższym właściwości mieszaniny gazowej po dodaniu do niej wodoru będą się znacznie różnić od właściwości obecnie stosowanego gazu ziemnego. Tym samym elementy systemu gazowniczego, a także odbiorniki gazu u odbiorców końcowych będą podlegać oddziaływaniu wodoru. Konieczne staje się zatem zapewnienie, że w granicach przewidywanych stężeń wodoru elementy systemu gazowniczego, a także odbiorniki gazu będą w stanie długotrwale pracować bez pogorszenia swych właściwości funkcjonalnych oraz zmniejszenia bezpieczeństwa technicznego. W niniejszym artykule omówiono wyniki dotychczasowych badań prowadzonych w INiG – PIB dotyczących wpływu mieszaniny gazu ziemnego i wodoru na: urządzenia gazowe użytku domowego oraz komercyjnego, rozliczenia i pomiary paliw gazowych, jakość paliw gazowych, gazomierze miechowe oraz reduktory średniego ciśnienia.
Recently, there has been a growing interest in adding hydrogen from renewable sources to the gas network, i.e. Power-to-Gas technology. This technology makes it possible to convert the produced electrical power into hydrogen and to store it in the gas network. It may become one of the significant factors of increasing the share of renewable energy in the overall energy mix. The addition of hydrogen to natural gas will result in the presence of a mixture of natural gas and hydrogen in the gas networks through which it will reach end users, including household customers. The physicochemical properties of hydrogen, such as specific density or viscosity, differ significantly from those of natural gas components, such as methane, ethane, propane, butane, nitrogen, etc. As a result, the properties of a gas mixture, after adding hydrogen, will be significantly different from those of the natural gas currently in use. Thus, both gas network components and gas appliances of end users will be exposed to hydrogen. It is therefore necessary to ensure long-period operation of gas network components and gas appliances, within the limits of anticipated hydrogen concentrations, without deterioration in their functional properties and technical safety. This paper discusses the results of research conducted at INiG – PIB in terms of resistance to a mixture of natural gas and hydrogen (up to 23%) on: gas appliances for household and commercial use, gaseous fuels metering and billing, gaseous fuels quality, diaphragm gas meters and medium pressure regulators.
Źródło:
Nafta-Gaz; 2019, 75, 10; 625-632
0867-8871
Pojawia się w:
Nafta-Gaz
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wpływ wykształcenia litofacjalnego na ilość i skład molekularny gazu desorbowanego i resztkowego
The influence of lithofacial variation on the amount and molecular composition of desorbed and residual gas
Autorzy:
Kania, M.
Janiga, M.
Powiązania:
https://bibliotekanauki.pl/articles/1835159.pdf
Data publikacji:
2018
Wydawca:
Instytut Nafty i Gazu - Państwowy Instytut Badawczy
Tematy:
gaz desorbowany
gaz resztkowy
chromatografia gazowa
skład molekularny
desorbed gas
residual gas
gas chromatography
molecular composition
Opis:
W artykule przedstawiono zależność różnego typu parametrów geochemicznych od wykształcenia litofacjalnego badanych skał, pochodzących przede wszystkim z utworów miedzionośnych. Określenie tego typu prawidłowości oraz rozpoznanie poszczególnych gazowych produktów generacji z różnego typu skał (między innymi: piaskowca, dolomitu wapnistego, anhydrytu, soli) pozwoli na przewidywanie miejsc występowania ekshalacji gazowych, a w przyszłości może przyczynić się do zwiększenia bezpieczeństwa w kopalniach. W ramach badań przeanalizowano zarówno skład molekularny gazów pod kątem obecności azotu nadmiarowego, helu, wodoru, związków siarki i węglowodorów, jak też dokładną ilość wydzielonego gazu. Badania były prowadzone na próbkach gazu swobodnego, reprezentującego tę część gazu, która znajduje się w przestrzeni porowej skały i która może swobodnie migrować (tzw. gaz desorbowany), oraz na próbkach reprezentujących tę część gazu, która jest uwolniona ze skały po rozdrobnieniu próbki w trakcie procesu degazacji (gaz resztkowy). Ilość i skład molekularny gazów pobranych „head space” oraz gazów wydzielonych w trakcie degazacji rdzeni skalnych są mocno skorelowane z wykształceniem litofacjalnym badanych rdzeni. Na podstawie uzyskanych wyników badań, skały takie jak: dolomit wapnisty, piaskowiec oraz anhydryt można zaklasyfikować jako miejsca o wysokim potencje akumulacyjnym dla gazów. Świadczą o tym duże ilości gazu resztkowego wydzielonego w trakcie procesu degazacji oraz wysoka zawartość różnego typu składników gazowych (zwłaszcza węglowodorów oraz dwutlenku węgla, azotu nadmiarowego i siarkowodoru). Sól kamienną, ze względu na wydzielone małe ilości gazu resztkowego, należy zaklasyfikować jako skałę o niskim potencjale akumulacyjnym. Natomiast wysoka zawartość azotu nadmiarowego i wodoru w próbkach gazu desorbowanego z soli kamiennej może być związana z migracyjnym charakterem gazu.
The article presents the dependence of various types of geochemical parameters on the lithofacial variation of the studied rocks, mainly from copper-bearing deposits. Determination of this type of regularity and identification of individual gas generation products from various types of rocks (for example: sandstone, dolomite, anhydrite, salt) will allow to predict the occurrence of gas exhalations, and in the future may contribute to safety in mines. As part of research the molecular gas composition for the presence of excess nitrogen, helium, hydrogen, sulfur compounds and hydrocarbons, as well as the exact amount of evolved gas, were examined. The study was conducted on free gas samples, representing that part of the gas, which is located in the pore space of the rock, and which is free to migrate (so-called “desorbed gas”) and on samples representing the part of the gas which is released from the rock sample after crushing, during the degassing process (residual gas). The amount and molecular composition of “head space” gases and gases emitted during the degassing of rock cores are strongly correlated with the lithophacial variation of the studied cores. Based on the obtained research results, rocks such as limy dolomite, sandstone and anhydrite can be classified as places with high accumulation capacities for gases. This is evidenced by the large amounts of residual gas emitted during the degassing process and the high content of various types of gaseous components (especially hydrocarbons, as well as carbon dioxide, excess nitrogen and hydrogen sulphide). Rock salt, due to the small amounts of residual gas, should be classified as a rock with low accumulation potential. On the other hand, the high content of excess nitrogen and hydrogen in desorbed gas samples from rock salt may be related to the migratory nature of the gas
Źródło:
Nafta-Gaz; 2018, 74, 12; 884-893
0867-8871
Pojawia się w:
Nafta-Gaz
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analiza stanu techniczno-prawnego instalacji gazowych w Polsce pod względem bezpieczeństwa ich eksploatacji – propozycje zmian
Analysis of technical and legal status of operation of gas installations in Poland in terms of safety – proposals for changes
Autorzy:
Minor, T.
Powiązania:
https://bibliotekanauki.pl/articles/1835336.pdf
Data publikacji:
2017
Wydawca:
Instytut Nafty i Gazu - Państwowy Instytut Badawczy
Tematy:
zabezpieczenia instalacji
instalacja gazowa
butle gazowe
bezpieczeństwo
security system
gas installation
gas cylinder
gas bottles
safety
Opis:
Pomimo dostępnych na rynku zabezpieczeń instalacji gazowych oraz materiałów stosowanych do budowy tych instalacji, często wykorzystywanych już w krajach UE oraz USA [1], przepisy obowiązujące w Polsce nie zawsze pozwalają swobodnie z nich korzystać. Obowiązujący w Polsce system prawny poddany został analizie pod kątem bezpieczeństwa eksploatacji urządzeń i instalacji gazowych, stosowania zabezpieczeń dostępnych na rynku oraz możliwości użycia nowych materiałów do budowy instalacji gazowych. Przedstawiono propozycję zmian systemowych, które wprowadziłyby możliwość stosowania tych rozwiązań, pozwalających zwiększyć bezpieczeństwo eksploatacji instalacji gazowych.
Despite the commercially available security of gas installations and materials used to build them, often already applied in the EU and the US [1], the provisions in force in Poland does not always allow you to freely use them. The legal system in force in Poland has been analyzed for the safety of the operation of gas appliances and installations, the use of securities available on the market and the possibility of using new materials for the construction of gas installations. A proposal of systemic changes that would introduce the possibility of applying these arrangements, which allow to increase the operational safety of gas installations.
Źródło:
Nafta-Gaz; 2017, 73, 11; 887-893
0867-8871
Pojawia się w:
Nafta-Gaz
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wpływ składników wstępnie uzdatnionego biogazu na elementy sieci i instalacji gazowych
Influence of pre-treated biogas components on the elements of gas networks and installations
Autorzy:
Wróblewska, Anna
Powiązania:
https://bibliotekanauki.pl/articles/31344034.pdf
Data publikacji:
2022
Wydawca:
Instytut Nafty i Gazu - Państwowy Instytut Badawczy
Tematy:
biogaz
sieć gazowa
instalacje gazowe
biogas
gas network
gas installations
Opis:
Głównym celem niniejszego artykułu jest przedstawienie wpływu składników wstępnie uzdatnionego biogazu na elementy sieci i instalacji gazowych, takie jak np. rury, złączki, armatura, reduktory, oraz na materiały uszczelniające stosowane w połączeniach mechanicznych. W pracy dokonano przeglądu elementów, z których mogą być budowane sieci gazowe, jak i tych występujących w instalacjach gazowych, a następnie zebrano informacje o materiałach, z których wykonywane są elementy liniowe, różnego typu złączki, jak również materiały stosowane do uszczelnienia, w celu określenia zakresu, w jakim należy przeprowadzić ocenę oddziaływania składników biogazu. Biorąc pod uwagę składy biogazu dostępne w literaturze oraz średni skład wstępnie oczyszczonego biogazu rolniczego, dokonano analizy doniesień literaturowych w zakresie możliwych oddziaływań poszczególnych składników na elementy sieci i instalacji gazowych. Przeanalizowano dostępne artykuły naukowe, a także informacje zebrane od producentów poszczególnych elementów, co wykazało, że trudno jest udzielić jednoznacznej odpowiedzi, które składniki biogazu rolniczego i w jakich stężeniach mogą stanowić zagrożenie dla bezpieczeństwa transportu nowego paliwa gazowego. Związane jest to z tym, że prowadzone dotychczas badania i analizy w dużej mierze koncentrowały się jedynie na pojedynczych składnikach lub ewentualnie na mieszaninach jednak o znacznie mniej złożonych składach, niż ma biogaz, stąd też trudno jest ocenić współoddziaływanie jego składników. W pracy określono główne składniki biogazu, które mogą niekorzystnie wpływać na elementy sieci i instalacji gazowych, zwrócono uwagę na ich możliwe wzajemne oddziaływania, a także na fakt, że część prowadzonych badań nie uwzględnia rzeczywistych warunków użytkowania, np. ciśnienia. We wnioskach wskazano również, że aby uzyskać jednoznaczną odpowiedź na pytanie o bezpieczeństwo transportu biogazu lub jego mieszanin, niezbędne jest przeprowadzenie dodatkowych badań.
The main aim of this article is to present the influence of pre-treated biogas components on elements of gas networks and installations, such as pipes, fittings, hardware, reducers and sealing materials used in mechanical connections. The work presents a review of both the elements that can be used to build gas networks and those found in gas installations, then collected information about the materials from which the linear elements are made, various types of couplings as well as the materials used for sealing, in order to determine the scope in which to assess the impact of biogas components. Taking into account the biogas compositions available in the literature and the average composition of pre-treated agricultural biogas, an analysis of literature reports was carried out on the possible impacts of individual components on the elements of gas networks and installations. The available scientific articles and information collected from the producers of individual elements were analyzed, which showed that it is difficult to give an unambiguous answer as to which ingredients of agricultural biogas and in what concentrations may pose a threat to the safety of the transport of the new gas fuel. This is due to the fact that the research and analyzes conducted so far have to a large extent focused only on single components or possibly on mixtures but with much less complex compositions than the composition of biogas, hence it is difficult to assess their interaction. The paper specifies the main components of biogas that may adversely affect the elements of gas networks and installations, emphasizes their possible interactions, as well as the fact that some of the research carried out does not take into account the actual conditions of use, e.g. pressure. It was also indicated in the conclusions that in order to obtain an unambiguous answer to the question about the safety of the transport of biogas or its mixtures, it is necessary to conduct additional tests.
Źródło:
Nafta-Gaz; 2022, 78, 11; 815-826
0867-8871
Pojawia się w:
Nafta-Gaz
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Przegląd metod wykrywania nieszczelności sieci gazowych
An overview of methods for detecting gas network leaks
Autorzy:
Holewa-Rataj, J.
Kukulska-Zając, E.
Powiązania:
https://bibliotekanauki.pl/articles/1835320.pdf
Data publikacji:
2017
Wydawca:
Instytut Nafty i Gazu - Państwowy Instytut Badawczy
Tematy:
gazociągi
sieci gazowe
wykrywanie nieszczelności
gas pipelines
gas networks
leakage detection
Opis:
Wycieki gazu ziemnego z sieci przesyłowej i dystrybucyjnej są poważnym zagrożeniem dla środowiska ze względu na emisję metanu do atmosfery. Niniejszy artykuł stanowi przegląd dostępnych i stosowanych metod wykrywania nieszczelności gazociągów. Opisano w nim metody techniczne, nietechniczne oraz obliczeniowe, szczególnie zwracając uwagę na możliwość wykorzystania tych metod podczas prowadzenia pomiarów wielkości emisji metanu.
Gas leaks from natural gas transmission and distribution networks are a serious threat to the environment due to the emission of methane into the atmosphere. This article reviews the available and used gas leak detection methods. It also describes the available technical, non-technical and calculation methods including the possible use of these methods when conducting measurements of methane emissions.
Źródło:
Nafta-Gaz; 2017, 73, 11; 871-877
0867-8871
Pojawia się w:
Nafta-Gaz
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Nawanianie paliw gazowych gwarancją ich bezpiecznego użytkowania
Fuel gases odorization as a security measure
Autorzy:
Huszał, A.
Powiązania:
https://bibliotekanauki.pl/articles/1835323.pdf
Data publikacji:
2017
Wydawca:
Instytut Nafty i Gazu - Państwowy Instytut Badawczy
Tematy:
nawanianie paliw gazowych
środki nawaniające
zapach
gas odorization
gas odorants
odor
Opis:
Nawanianie podobnie jak wiele innych procesów technologicznych stale ewoluuje. Dzięki szybko rozwijającej się technologii pojawiają się coraz doskonalsze narzędzia służące do realizacji tego procesu, wliczając w to również nadzór nad nim. Stały rozwój w obszarze nawaniania jest bardziej efektywny, jeżeli istnieje ścisła współpraca między przemysłem gazowniczym dbającym na co dzień o bezpieczeństwo użytkowania gazów sieciowych (co gwarantuje oczywiście ich nawanianie) i nauką zapewniającą narzędzia i ułatwiającą ich aplikacje. Obecnie w Polsce proces nawaniania jest ustabilizowany oraz prowadzony na odpowiednio wysokim poziomie. Przyjęte zostały międzynarodowe standardy w tym zakresie. Artykuł przybliża historię nawaniania gazów, ze szczególnym uwzględnieniem warunków krajowych.
Due to rapid advancement in technology, more and more precise apparatuses are being developed to aid odorization, including the supervision of the process. Stable progress in odorization is more effective through close cooperation between the gas industry, which ensures safe use of the gas mains – obviously including its odorization – and science which provides the tools and facilitates the process. Currently, the deodorization process in Poland seems to be stabilized in practice and conducted at a sufficiently high level. International standards are adopted in this regard. The following article discusses the history of gas odorization, in particular domestic conditions.
Źródło:
Nafta-Gaz; 2017, 73, 11; 878-886
0867-8871
Pojawia się w:
Nafta-Gaz
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Przegląd metod przygotowania mieszanin wzorcowych dla kontroli procesu nawaniania
Overview of the methods for preparing the mixtures for the control of the odorization process
Autorzy:
Lisman, Szymon
Huszał, Anna
Powiązania:
https://bibliotekanauki.pl/articles/2143570.pdf
Data publikacji:
2021
Wydawca:
Instytut Nafty i Gazu - Państwowy Instytut Badawczy
Tematy:
nawanianie paliw gazowych
kontrola
nawanianie
gaz
gas odorization
gas
odorisation
control
Opis:
Nawanianie, podobnie jak wiele innych procesów technologicznych, jest procesem stale ewoluującym. Dzięki szybko rozwijającej się technologii realizacji tego procesu pojawiają się coraz doskonalsze narzędzia służące do jego realizacji, wliczając w to również nadzór nad nim. Obecnie w Polsce proces nawaniania jest ustabilizowany i prowadzony na odpowiednio wysokim poziomie. Przyjęte zostały międzynarodowe standardy w tym zakresie. Jednym z ważniejszych wymagań dotyczących jakości gazów ziemnych dostarczanych odbiorcom z sieci rozdzielczej, gwarantującym ich bezpieczne użytkowanie, jest zapewnienie właściwego poziomu nawonienia, który będzie umożliwiał wykrycie niekontrolowanych upływów gazów z sieci rozdzielczej, instalacji i urządzeń gazowych. Zmienność stężenia środka nawaniającego w sieci gazowej jest wielkością dynamiczną, towarzyszącą stale procesowi nawaniania. Stąd wynika potrzeba stałego nadzoru metrologicznego nad przebiegiem procesu, m.in. przez pomiary stężenia środka nawaniającego. W ostatnich latach w przemyśle gazowniczym obserwuje się tendencję do prowadzenia coraz dokładniejszej kontroli procesu nawaniania metodami analitycznymi, w tym zwłaszcza metodą chromatografii gazowej. Podstawowym warunkiem uzyskiwania dokładnych wyników pomiarów wykonywanych metodami porównawczymi (do których zalicza się chromatografia gazowa), wymagającymi kalibracji lub wzorcowania urządzeń pomiarowych, jest stosowanie wzorców o odpowiedniej jakości metrologicznej. W celu uzyskania wyniku odznaczającego się możliwie jak najniższą niepewnością niezbędne jest wręcz stosowanie gazowych mieszanin wzorcowych środka nawaniającego o jak najwyższej tolerancji analitycznej. Jakość i stabilność gazów wzorcowych uzależniona jest od wielu różnorodnych czynników, takich jak czystość składników stosowanych do ich wytworzenia, szczelność instalacji służącej do ich wytwarzania czy rodzaj samej metody wytwarzania. W praktyce gazowe mieszaniny wzorcowe otrzymywane są przy zastosowaniu technik statycznych, dynamicznych lub mieszanych. Niniejszy artykuł przybliża różne metody sporządzania mieszanin wzorcowych jednego ze środków nawaniających, stosowanych m.in. w Polsce, jakim jest tetrahydrotiofen (THT). Opisano również wyniki przeprowadzonych w Zakładzie Nawaniania Paliw Gazowych Instytutu Nafty i Gazu – Państwowego Instytutu Badawczego badań stabilności składu mieszanin wzorcowych THT wykonywanych metodą własną. Pozwoliły one określić minimalny okres przechowywania i użytkowania wzorców bez pogorszenia się ich jakości.
Odorization, like many other technological processes, is a constantly evolving process. Thanks to the rapidly developing technology of its implementation, there are more and more perfect tools for the implementation of this process, including its supervision. Currently, the odorization process in Poland is stabilized and carried out at a sufficiently high level. International standards in this area have been adopted. One of the most important requirements concerning the quality of natural gases supplied to customers from the distribution network, guaranteeing their safe use, is to ensure the proper level of odorization, which will enable detection of uncontrolled gas leaks from the distribution network, gas installations and devices. Variability of odorant concentration in a gas network is a dynamic value that constantly accompanies the odorization process. Hence the need for constant metrological monitoring of the process course, e.g. by measuring the concentration of odorant. In recent years, there has been a strong tendency in the gas industry towards more precise control of the odorization process by analytical methods, especially gas chromatography. The basic condition for obtaining accurate results of measurements performed with comparative methods, requiring rating or calibration of measuring devices, is the use of standards of appropriate metrological quality. In order to obtain measurement results with the lowest possible uncertainty, it is even necessary to use standard gas mixtures for gas odorization with the highest analytical tolerance. The quality and stability of reference gases depends on many different factors, such as the purity of the ingredients used to produce them, the tightness of the installation used for their production or the type of the production method itself. In practice, standard gas mixtures are obtained using static, dynamic or mixed techniques. The article below presents the different methods of preparing standard mixtures of one of the odorants, also used in Poland – tetrahydrothiophene (THT). It also describes the results of the study of the composition stability of THT standard mixtures, carried out by the own method, at the Gas Fuel Odorization Department of the Oil and Gas Institute – National Research Institute. They allowed to define the minimum period of storage and use of these standards without any changes of their quality.
Źródło:
Nafta-Gaz; 2021, 77, 9; 607-612
0867-8871
Pojawia się w:
Nafta-Gaz
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Natychmiastowa detekcja nielegalnego poboru gazu u odbiorców ze zdemontowanym gazomierzem
Immediate detection of illegal gas consumption at consumers with a disassembled gas meter
Autorzy:
Łach, Maciej
Powiązania:
https://bibliotekanauki.pl/articles/2143401.pdf
Data publikacji:
2021
Wydawca:
Instytut Nafty i Gazu - Państwowy Instytut Badawczy
Tematy:
nierozliczone ilości gazu
nielegalny pobór gazu
kradzież gazu
detekcja nielegalnego poboru gazu
unaccounted-for gas lost
illegal gas consumption
gas theft
detection of illegal gas consumption
Opis:
Jednym ze źródeł nierozliczonych ilości gazu w sieci dystrybucyjnej są kradzieże gazu. Najczęściej do tego typu procederu dochodzi poprzez ingerencję w gazomierz u odbiorcy indywidualnego. Operatorzy, starając się minimalizować straty gazu, prowadzą ciągłą kontrolę urządzeń pomiarowych, mającą na celu wychwycenie nieautoryzowanych ingerencji. W przypadku wykrycia nieprawidłowo- ści gazomierz może zostać skierowany na badanie metrologiczne lub/i mechanoskopijne w akredytowanym do tego celu laboratorium, którego zadaniem, jako niezależnej strony trzeciej, jest określenie stopnia ingerencji oraz wyznaczenie błędu wskazań gazomierza. Pozwala to operatorowi sieci na oszacowanie poniesionych strat oraz wystosowanie konkretnych roszczeń w stosunku do konsumenta. Kolejnym źródłem strat przedsiębiorstwa gazowniczego mogą być kradzieże gazu z całkowitym pominięciem układów pomiarowych. Może do nich dochodzić np. po rozwiązaniu umowy z konsumentem lub nawet przed jej zawarciem. W takich przypadkach kontrola punktów pomiarowych jest szczególnie trudna, a dochodzenie należności z tytułu nielegalnego poboru gazu łatwe do zakwestionowania ze względu na brak możliwości wyznaczenia ilości pobranego gazu. Sytuację pogarsza fakt negatywnego wpływu tego typu połączeń na bezpieczeństwo działania sieci gazowej. W ramach prac badawczych prowadzonych w INiG – PIB podjęto próbę opracowania urządzenia umożliwiającego detekcję nielegalnego poboru gazu z pominięciem gazomierza. W artykule przedstawiono zagrożenia oraz skutki prawne, jakie niesie ze sobą nielegalny pobór gazu z pominięciem gazomierza, w szczególności gdy proceder jest realizowany za pomocą np. dętki. Następnie omówiono, jakie wymagania powinno spełniać urządzenie, które pozwoliłoby ograniczyć problem nielegalnego poboru gazu u odbiorców ze zdemontowanym gazomierzem. W dalszej części artykułu omówiono technologię spełniającą wskazane założenia oraz zaprezentowano rysunek koncepcyjny urządzenia. W efekcie przedstawiono sposób wykonania pierwszej wersji prototypu oraz potwierdzono poprawność jego działania. Opisana na łamach artykułu druga wersja prototypu posłużyła do zgłoszenia wynalazku do Urzędu Patentowego Rzeczypospolitej Polskiej.
One of the sources of unaccounted-for gas in the distribution network is gas theft. Most thefts occur by gas residential consumers tampering with gas meters. In an attempt to minimize losses, operators conduct a constant control of metering equipment in order to detect unauthorized interference. If any irregularities are detected, the gas meter can be sent for metrological and/or mechanoscopic examination in a laboratory accredited for that purpose. Its task, as an independent third party, is to determine the degree of interference and determine the error in the gas meter readings. This allows the gas network operator to estimate the losses incurred and to make specific claims against the consumer. Another source of losses for the gas company may be thefts of gas involving total bypassing of metering systems. This may occur e.g. after the termination of a contract with a consumer or even before its conclusion. In such cases, control of metering points is particularly difficult, and the recovery of amounts due to illegal gas consumption may be easily questioned due to the impossibility of determining the volumes of gas taken. The situation is exacerbated by the fact that such connections have a negative impact on the operational security of the gas network. As part of research work conducted at the Oil and Gas Institute – National Research Institute, an attempt was made to develop a device that would enable the detection of illegal gas consumption bypassing the gas meter. The article presents the risks and legal consequences of such an illegal gas consumption, in particular when carried out by means of, for example, an inner tube. Then the article discusses what requirements should be met by a device that would reduce the problem of illegal gas consumption by consumers with a dismantled gas meter. Further in the article, the technology the indicated assumptions is demonstrated and a conceptual drawing of the device is presented. As a result, the method of constructing the first version of the prototype was presented and the correctness of its operation was confirmed. The second version of the prototype, described in the article, was used to file and application for the invention at the Patent Office of the Republic of Poland.
Źródło:
Nafta-Gaz; 2021, 77, 12; 805-811
0867-8871
Pojawia się w:
Nafta-Gaz
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Określenie możliwości odwadniania gazu ziemnego na membranach polimerowych
Possibility of natural gas dehydration using polymer membranes
Autorzy:
Janocha, A.
Powiązania:
https://bibliotekanauki.pl/articles/1835457.pdf
Data publikacji:
2017
Wydawca:
Instytut Nafty i Gazu - Państwowy Instytut Badawczy
Tematy:
membranowa separacja gazowa
osuszanie gazu ziemnego
membrane gas separation
natural gas dehydration
Opis:
Osuszanie gazu ziemnego na instalacjach glikolowych jest energochłonne i emituje do środowiska niebezpieczne związki chemiczne. Przeprowadzono badania osuszania azotu, metanu i gazu ziemnego na module membranowym. Badania wykonywano na mikrokapilarnych membranach (hollow fiber) z poliimidu. Moduł membranowy zamontowany był na stanowisku pomiarowym do badań w warunkach wysokiego ciśnienia gazu. Prowadzono pomiary przepływu strumieni gazu, ciśnienia, temperatury i wilgotności w strumieniach nadawy, retentatu i permeatu. Uzyskano wysokie stopnie obniżenia wilgotności w gazach. Stwierdzono, że efektywność osuszania gazu po kontakcie z membraną zależy od wartości przepływów i od ciśnienia. Wraz ze wzrostem ciśnienia transmembranowego efektywność odwodnienia się zwiększa. Przy ciśnieniu gazu powyżej 10 bar uzyskiwany jest poziom zawilgocenia odpowiadający wymaganiom normy osuszania gazu ziemnego w zimie, przy współczynniku podziału powyżej 0,08. Przy ciśnieniu gazu powyżej 45 bar norma osuszania spełniona jest przy współczynniku podziału poniżej 0,01. Wykazano, że technologia membranowa stanowi atrakcyjną metodę osuszania gazu ziemnego na membranach.
Dehydration of natural gas at glycol installations is energy-consuming and emits hazardous chemicals to the environment. Dehydration tests of nitrogen, methane and natural gas on a membrane module were conducted. The tests were conducted on microcapillary membranes (hollow fiber) made of polyimide. The membrane module was mounted on a test station in high gas pressure conditions. The flow of the streams of gas, pressure, temperature and humidity in the streams of feed, retentate and permeate were conducted. High levels of humidity reduction in gases were obtained. It was found that the dehydration effectiveness of gas, after contact with the membrane, depends on the values of flows and pressure. With the increase of the transmembrane pressure, the effectiveness of dehydration increases. At a gas pressure above 10 bar, the level of humidity achieved is corresponding to the requirements of the standards for dehydration of natural gas in winter, with a partition coefficient (stage cut) above 0.08. At a gas pressure above 45 bar, the standard for dehydration is met at a partition coefficient of less than 0.01. It was proven that the membrane technology is an attractive method for natural gas dehydration on membranes.
Źródło:
Nafta-Gaz; 2017, 73, 7; 502-509
0867-8871
Pojawia się w:
Nafta-Gaz
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wstępna analiza możliwości przeskoku liczydła mechanicznego gazomierza miechowego
Preliminary analysis of the possibility of an incorrect shift of the mechanical index of a diaphragm gas meter
Autorzy:
Lipka, Tomasz
Dudek, Adrian
Powiązania:
https://bibliotekanauki.pl/articles/31348184.pdf
Data publikacji:
2022
Wydawca:
Instytut Nafty i Gazu - Państwowy Instytut Badawczy
Tematy:
gazomierz miechowy
liczydło mechaniczne
nieprawidłowy przeskok liczydła
nielegalny pobór gazu
kradzież gazu
nierozliczone ilości gazu
ekspertyza
diaphragm gas meter
mechanical index
incorrect shift of gas meter index
illegal gas consumption
gas theft
unaccountedfor gas lost
expertise
Opis:
W artykule omówiono problematykę nielegalnego poboru gazu (ang. unaccounted for gas, UAG) w oparciu o dane literaturowe. Problematyka ta znana jest nie tylko w Polsce, ale i na całym świecie. Opisano źródło problemu przeskoków liczydeł mechanicznych zgłaszanych przez odbiorców oraz przedstawiono częściowe wyniki analizy około 1400 ekspertyz wykonywanych w ramach działalności Instytutu Nafty i Gazu – Państwowego Instytutu Badawczego. Podano krótki opis sposobu postępowania podczas wykonywania ekspertyzy mechanoskopijnej z podejrzeniem wystąpienia niekontrolowanego przeskoku wskazania liczydła mechanicznego gazomierza. Oceniano występujące luzy technologiczne pomiędzy bębenkami oraz przerzutnikami dekadowymi. W dalszej części artykułu szczegółowo opisano budowę konstrukcyjną oraz wyjaśniono zasadę działania liczydła mechanicznego zarówno ze sprzęgłem magnetycznym jak i mechanicznym. W części praktycznej zawarto opis wytypowanych próbek, na których prowadzono badanie. Poza jednym wyjątkiem były to liczydła nowe, pochodzące z demontażu z gazomierzy, ze wskazaniem początkowym bliskim lub równym 0 m3. W dalszej części zaprezentowano szczegółowy opis konstrukcji wykonanego stanowiska badawczego podzielonego na trzy moduły badawcze. Przytoczono literaturę, na podstawie której opracowywano założenia do przebiegu testów laboratoryjnych w trakcie których symulowano pracę gazomierza w okresie zimowym dla domu ogrzewanego kotłem gazowym z zasobnikiem ciepłej wody użytkowej (CWU) oraz płytą gazową przeznaczoną do przygotowywania posiłków. Cykle badawcze były tak dostosowane, aby odzwierciedlić pracę gazomierzy o wielkości G4 (zakres pomiarowy 0,04–6,0 m3 /h), które są najczęściej stosowane w gospodarstwach domowych. Testy wykonano w temperaturze pokojowej z zakresu 25°C(±5°C). Napędzanie liczydeł trwało przez 7 miesięcy przy średnim strumieniu około 4 m3/h. Zasymulowano średnie zużycie 2000 m3, co odzwierciedla pracę gazomierza przez okres około 10 lat. We wnioskach zawarto analizę otrzymanych rezultatów, z których wynika, że przeskok liczydła mechanicznego gazomierza miechowego jest możliwy, ale tylko w specyficznych warunkach trudnych do wykazania.
The article discusses the problem of illegal gas consumption – UAG (unaccounted for gas) based on literature data. This problem is known not only in Poland but also in the whole world. The source of the problem of uncorrected turn of drums of mechanical index of diaphragm gas meter reported by customers has been described and partial results of the analysis of about 1400 expert opinions carried out by the Oil and Gas Institute – National Research Institute have been presented. A brief description of how to proceed when performing mechanoscopic expertise in case of suspicion of uncorrected turn of drums of mechanical index of a gas meter has been included. The technological clearances between drums and decade converters have been assessed. In the following part of the article, the design has been described in detail and the principle of operation of the mechanical index with both magnetic and mechanical drive has been explained. In the practical part there is a description of selected samples based on which the research was conducted. With one exception these were new indices, from disassembled gas meters, with initial indication close or equal to 0 m3. In the next section a detailed of the construction of the 3 test rig has been presented. The publications based on which the assumptions were worked out for the course of laboratory tests during which the operation of the gas meter was simulated in the winter period for a house heated by a gas furnace with a hot water storage tank and a gas plate intended for preparing meals has been quoted. The test cycles were adjusted to reflect the operation of gas meters of G4 size (measuring range 0.04–6.0 m3/h), which are most commonly used in households. The tests were performed at room temperature within the range of 25 ±5°C. The driving of the index lasted for a period of 7 months with an average flow rate of about 4 m3/h. An average consumption of 2000 m3 was simulated, which reflects the operation of the gas meter for a period of about 10 years. The conclusions include an analysis of the obtained results, which shows that the uncorrected turn of drums mechanical index of diaphragm gas meter is possible, but only under specific conditions that are difficult to demonstrate.
Źródło:
Nafta-Gaz; 2022, 78, 7; 535-541
0867-8871
Pojawia się w:
Nafta-Gaz
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Rational methods of operation of underground gas storages and mitigation of energy losses
Racjonalne sposoby działania podziemnych magazynów gazu z uwzględnieniem zużycia nośnika energii
Autorzy:
Chernova, Oksana
Vytyaz, Oleg
Martyniuk, Rostislav
Fedorovych, Irina
Powiązania:
https://bibliotekanauki.pl/articles/2143332.pdf
Data publikacji:
2022
Wydawca:
Instytut Nafty i Gazu - Państwowy Instytut Badawczy
Tematy:
underground gas storages
cyclic operation
compressor station
gas losses
gas consumption
podziemne magazyny gazu
praca cykliczna
tłocznia
straty gazu
zużycie gazu
Opis:
The fuel and energy complex of Ukraine, like most developed countries of the world, is a complex system of material production incorporating a set of many subsystems that cover the extraction, conversion, distribution, storage and consumption of energy. Ukraine's gas transportation system has an extremely complex system, which consists of gas pipelines of various purposes and capacities, compressor stations, compressor shops, gas distribution stations and underground gas storage facilities. Compressor stations, allied with underground storage, ensure full pipeline use, reliability of work, modes of regulation of transit flows and maintenance of uninterrupted supply. Their co-employment is considered one of the most effective methods of increasing reserves for reliable gas supply and efficiency of gas sales in the country and abroad. The use of storage reduces the unevenness of seasonal consumption and enables timely delivery. This is justified by the fact that during the year, gas production is uneven, as is consumption. In winter, the amount of gas extracted does not provide the amount of gas consumed. Therefore, underground storage facilities are an integral part of the gas transmission system, which must function efficiently. The Ukrainian gas transportation system is part of the European energy system, despite the fact that the country itself is not yet a member of the EU. To research the issues of improving the efficiency of the system and underground storage facilities, it is necessary to analyse the parameters of their work and study the problems of reducing costs during storage and transportation. In the work on the basis of the analysis of the cyclic operation of the Dashavsky underground storage, the energy approach to an estimation of losses of gas at storage is offered. This will streamline and specify the general ideas and the level of irreversible losses of natural gas as an energy source and will increase the efficiency of operation of the underground gas storage as a whole. At the same time, taking into account the energy characteristics of natural gas when forecasting its losses during storage will significantly affect the organisation and optimisation of maintenance of storage equipment and, in particular, the compressor station.
Kompleks paliwowo-energetyczny Ukrainy, podobnie jak w większości krajów rozwiniętych, jest złożonym systemem produkcji materiałów, zespołem wielu podsystemów, które obejmują wydobycie, konwersję, dystrybucję, magazynowanie i zużycie energii. System przesyłu gazu na Ukrainie ma niezwykle złożoną strukturę, składającą się z gazociągów o różnym przeznaczeniu i pojemności, tłoczni, stacji dystrybucji gazu i podziemnych magazynów gazu. Tłocznie zapewniają przepustowość rurociągów, niezawodność działania, tryby regulacji przepływów tranzytowych oraz nieprzerwane dostawy realizowane za pomocą podziemnych magazynów gazu. Ich wykorzy- stanie uważane jest za jedną z najskuteczniejszych metod zwiększania rezerw, zapewniających niezawodne dostawy gazu oraz efektywność sprzedaży gazu w kraju i za granicą. Zastosowanie magazynu zmniejsza nierówności sezonowego zużycia i zapewnia terminowość dostaw. Jest to uzasadnione nierównomiernym wydobyciem oraz zużyciem gazu w ciągu roku. Zimą ilość wytworzonego gazu nie odpowiada ilości zużytego gazu. Dlatego podziemne magazyny stanowią integralną część systemu przesyłowego gazu, która musi sprawnie funkcjonować. Ukraiński system przesyłu gazu jest częścią europejskiego systemu energetycznego, mimo że sam kraj nie jest członkiem UE. Aby zbadać zagadnienia poprawy wydajności systemu i podziemnych magazynów, konieczne jest przeanalizowanie parametrów ich pracy oraz zbadanie problemów redukcji kosztów podczas magazynowania i transportu. W artykule, na podstawie analizy cyklicznej pracy podziemnego magazynu Daszawa, zaproponowano energetyczne podejście do oceny strat gazu podczas magazynowania. Uprości to ogólne idee i doprecyzuje poziom nieodwracalnych strat gazu ziemnego jako źródła energii oraz zwiększy efektywność działania wszystkich podziemnych magazynów gazu. Jednocześnie uwzględnienie charakterystyk energetycznych gazu ziemnego przy prognozowaniu jego strat podczas magazynowania w znaczący sposób wpłynie na organizację i optymalizację obsługi urządzeń magazynowych, a w szczególności tłoczni.
Źródło:
Nafta-Gaz; 2022, 78, 3; 187-196
0867-8871
Pojawia się w:
Nafta-Gaz
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Mieszalnia gazów jako niezbędny element aparatury badawczej w nowoczesnym laboratorium paliw gazowych
Gas mixing plant as an indispensable element of equipment in a modern laboratory of gaseous fuels
Autorzy:
Basiura, Maciej
Rataj, Mateusz
Powiązania:
https://bibliotekanauki.pl/articles/2143253.pdf
Data publikacji:
2022
Wydawca:
Instytut Nafty i Gazu - Państwowy Instytut Badawczy
Tematy:
mieszalnia gazów
gaz
badanie
mieszanki gazowe
gas mixing plant
test
gases
gas mixtures
Opis:
Autorzy przedstawiają rozwój technologii otrzymywania mieszanin gazowych w Laboratorium Badań Urządzeń Gazowych i Grzewczych Instytutu Nafty i Gazu – Państwowego Instytutu Badawczego w Krakowie. We wstępie do artykułu zwrócono uwagę na konieczność stosowania mieszanek gazowych o różnym składzie procentowym podczas badań urządzeń gazowych, na potrzeby certyfikacji i dopuszczenia do udostępnienia urządzeń do obrotu na rynku UE. Zaprezentowano najprostsze metody otrzymywania mieszanek gazowych. Przedstawiono metody stosowane w Laboratorium we wcześniejszych latach, dzięki którym otrzymywano mieszanki badawcze bez użycia urządzeń automatycznej regulacji strumienia gazu. Do tworzenia mieszanek wykorzystywano prawa fizyczne opisujące stany równowagi mieszaniny gazowej. Następnie przedstawiono zasadę działania mieszalni gazów oraz elementy umożliwiające jej automatyzację. Opisano opracowane w INiG – PIB konstrukcje mieszalni gazów do badań, umożliwiające automatyczne otrzymywanie mieszanin gazowych. Zaprezentowano również mieszalnik, będący przedmiotem zgłoszenia patentowego. W drugiej części artykułu przedstawiono szeroki zakres prac badawczych i rozwojowych wykonanych przez pracowników Instytutu na przestrzeni lat. Pokrótce opisano prace badawcze, skupiające się m.in. na wymienności paliw gazowych. Polegały one na badaniu parametrów użytkowych urządzeń gazowych podczas zasilania gazami z domieszkami różnych gazów w ilościach niespotykanych obecnie w gazie ziemnym, np. etanu, wodoru, tlenku węgla(IV). Innymi opisanymi w artykule tematami podjętymi przez pracowników INiG – PIB jest wykorzystanie wodoru jako domieszki do gazu ziemnego i przedstawienie jego wpływu na wszystkie elementy sieci przesyłowej i dystrybucyjnej. Wszystkie opisane prace badawcze podejmowane przez pracowników INiG – PIB mogą stać się ważną częścią składową analiz związanych z dywersyfikacją dostaw gazu na terenie Polski. W podsumowaniu przedstawiono perspektywy rozwoju mieszalni gazów, w tym ich komercyjne wykorzystanie przez operatorów sieci przesyłowej i/lub dystrybutorów gazu. Artykuł zwraca uwagę na fakt, że w dobie transformacji energetycznej świata i położenia nacisku na wykorzystanie ekologicznych paliw mieszalnie mogą stać się niezbędnym elementem systemu dostarczania gazu dla odbiorców końcowych.
The authors present the development of technology for obtaining gas mixtures in the Laboratory for Gas and Heating Equipment Testing of the Oil and Gas Institute – National Research Institute in Krakow. In the introduction to the article, attention was drawn to the need to use gas mixtures with a different percentage composition during tests of gas equipment, for the purposes of certification and the authorization to make the equipment available on the EU market. The simplest methods of obtaining gas mixtures are presented. The methods used in the previous years in the Laboratory, by which test mixtures were obtained without use of automatic gas flow control devices, are presented. Physical laws describing the equilibrium states of a gas mixture were used to create the mixtures. Then, the principle of operation of the gas mixing plant and the elements enabling its automation are presented. Structures of gas mixing plants developed at the Oil and Gas Institute – National Research Institute, enabling automatic production of gas mixtures are described. A patent pending is also described. The second part of the article presents a wide range of research and development work carried out by the Institute's employees over the years. Research works focusing, inter alia, on the exchangeability of gaseous fuels are described. They consisted in examining the operational parameters of gas appliances when fed with gases with admixtures of various gases not currently found in natural gas, e.g. ethane, hydrogen, inter alia. Other topics discussed in the article, taken up by INiG – PIB employees, was the use of hydrogen as an admixture of natural gas and its impact on all elements of the gas transmission and distribution network. All the described research work undertaken by INiG – PIB employees may become an important component of analyses related to the diversification of gas supplies in Poland. The summary presents the prospects for the development of gas mixing plants, including their commercial use by gas transmission network operators and/or gas distributors. The article draws attention to the fact that in the era of the energy transformation of the world and the emphasis on the use of ecological fuels, mixing plants may become an indispensable element of the gas supply system to end users.
Źródło:
Nafta-Gaz; 2022, 78, 5; 386-392
0867-8871
Pojawia się w:
Nafta-Gaz
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies