Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "nanocząstki" wg kryterium: Temat


Wyświetlanie 1-13 z 13
Tytuł:
Nanocząstki ditlenku tytanu – działanie biologiczne
Titanium dioxide nanoparticles – Biological effects
Autorzy:
Świdwińska-Gajewska, Anna M.
Czerczak, Sławomir
Powiązania:
https://bibliotekanauki.pl/articles/2166213.pdf
Data publikacji:
2015-01-09
Wydawca:
Instytut Medycyny Pracy im. prof. dra Jerzego Nofera w Łodzi
Tematy:
ditlenek tytanu
nanocząstki
narażenie zawodowe
działanie toksyczne
titanium dioxide
nanoparticles
occupational exposure
toxicity
Opis:
Ditlenek tytanu (TiO₂) może występować w postaci cząstek o różnej wielkości. Najczęściej wykorzystywane są cząstki o rozmiarze do 100 nm odpowiadające wielkością nanocząstkom oraz cząstki o wielkości z przedziału 0,1–3 mm. Ditlenek tytanu nie jest klasyfikowany jako substancja szkodliwa w postaci większych cząstek, jednak nanocząstki TiO₂ mogą wywołać wiele negatywnych efektów zdrowotnych. Narażenie inhalacyjne na nano-TiO₂ wywołuje stan zapalny, mogący prowadzić do zmian zwłóknieniowych i proliferacyjnych w płucach. Istnieje wiele prac na temat genotoksycznego działania TiO₂ na komórki ssaków i ludzi, szczególnie w przypadku nanocząstek. U szczurów narażanych inhalacyjnie na nanocząstki TiO₂ zaobserwowano powstawanie nowotworów. Nie ma jednak dowodów na wzrost dodatkowego ryzyka wystąpienia raka płuca lub zgonu związanego z tą chorobą u osób zawodowo narażonych na pył TiO₂. Istnieją badania potwierdzające negatywny wpływ nanocząstek TiO₂ na rozwój płodu i funkcje układu rozrodczego u zwierząt. Nanocząstki TiO2 znajdują coraz szersze zastosowanie i tym samym zwiększa się ryzyko narażenia na nanocząstki ditlenku tytanu w środowisku pracy. Wobec tak niepokojących danych dotyczących biologicznego działania nanocząstek TiO₂ należy zwrócić większą uwagę na narażenie i jego skutki dla zdrowia pracowników. Właściwości nanocząstek, ze względu na większą powierzchnię i reaktywność, różnią się istotnie od frakcji wdychalnej, dla której obowiązują obecnie normatywy higieniczne w Polsce. Med. Pr. 2014;65(5):651–663
Titanium dioxide occurs as particles of various sizes. Particles of up to 100 nm, corresponding to nanoparticles, and in the size range of 0.1–3 mm are the most frequently used. Titanium dioxide in a bulk form is not classified as dangerous substance, nevertheless nanoparticles may cause adverse health effects. Inhalation exposure to nano-TiO₂ causes pulmonary inflammation that may lead to fibrotic and proliferative changes in the lungs. Many studies confirm the genotoxic effect of TiO₂, especially in the form of nanoparticles, on mammal and human cells. In rats exposed to TiO₂-nanoparticles by inhalation the development of tumors has been observed. However, there is no evidence of additional lung cancer risk or mortality in workers exposed to TiO₂ dust. There are some studies demonstrating the adverse effect of TiO₂-nanoparticles on fetal development, as well as on reproduction of animals. TiO₂ nanoparticles find a still wider application and thus the risk of occupational exposure to this substance increases as well. Considering such alarming data on the biological activity of TiO₂ nanoparticles, more attention should be paid to occupational exposure and its health effects. Properties of the nanoparticles, due to their larger surface area and reactivity, differ significantly from the inhalable dust of TiO₂, for which the hygiene standards are mandatory in Poland. Med Pr 2014;65(5):651–663
Źródło:
Medycyna Pracy; 2014, 65, 5; 651-663
0465-5893
2353-1339
Pojawia się w:
Medycyna Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Potencjalne narażenie na nanocząstki srebra podczas rozpylania preparatu do czyszczenia klimatyzacji
Potential exposure to silver nanoparticles during spraying preparation for air-conditioning cleaning
Autorzy:
Jankowska, Elżbieta
Łukaszewska, Joanna
Powiązania:
https://bibliotekanauki.pl/articles/2168408.pdf
Data publikacji:
2014-10-29
Wydawca:
Instytut Medycyny Pracy im. prof. dra Jerzego Nofera w Łodzi
Tematy:
nanocząstki
nanoobiekty
srebro
klimatyzacja
narażenie zawodowe
nanoparticles
nano-objects
silver
airconditioning
occupational exposure
Opis:
Wstęp: Unikalne właściwości celowo zaprojektowanych nanomateriałów (engineered nanomaterials - ENM) i wytwarzanych z nich produktów zdeterminowały dynamiczny rozwój w obszarze wytwarzania i stosowania ENM w różnych gałęziach przemysłu i w zakładach pracy o różnej skali produkcji. Ponieważ nanoobiekty (nanopłytki, nanowłókna, nanocząstki) emitowane podczas wytwarzania i stosowania ENM mogą być przyczyną wielu chorób, także jeszcze nierozpoznanych, na całym świecie prowadzone są prace badawcze z zakresu oceny narażenia wynikającego z emisji nanoobiektów na stanowiskach pracy oraz zagrożeń zdrowotnych dla osób zatrudnionych w procesach wytwarzania i stosowania ENM. Materiał i metody: Badanie potencjalnego narażenia na nanocząstki srebra zawarte w preparacie do czyszczenia klimatyzacji (Nano Silver z Amtra Sp. z o.o.) prowadzono poprzez określanie stężeń i rozkładu wymiarowego cząstek z użyciem różnych przyrządów umożliwiających śledzenie zmian w szerokim zakresie wymiarów cząstek - od nanometrowych (10 nm) do mikrometrowych (10 µm), czyli cząstek, które są z reguły wdychane przez człowieka. Wyniki i wnioski: Z analizy danych wynika, że nawet podczas krótkotrwałego rozpylania preparatu Nano Silver (przez 10 s) w powietrzu - w odległości 52 cm od miejsca rozpylania preparatu - mogą być obecne cząstki o wielkości 10 nm-10 µm. Podczas 3-krotnego rozpylenia preparatu w podobnych warunkach stwierdzono różny wzrost stężeń, przy czym w każdym z przypadków cząstki przez dłuższy czas utrzymywały się w powietrzu. Med. Pr. 2013;64(1):57–67
Background: Unique properties of engineered nanomaterials (ENMs) and products made of them have contributed to a rapid progress in the production and application of ENMs in different branches of industry and in factories with different production scale. Bearing in mind that nano-objects (nanoplates, nanofibres, nanoparticles), emitted during ENM production and application, can cause many diseases, even those not yet recognized, extensive studies have been carried all over the world to assess the extent of exposure to nano-objects at workstations and related health effects in workers employed in ENM manufacture and application processes. Material and Methods: The study of potential exposure to silver nanoparticles contained in the preparation for airconditioning cleaning (Nano Silver from Amtra Sp. z o.o.) involved the determination of concentrations and size distribution of particles, using different devices, allowing for tracing changes in a wide range of dimensions, from nano-size (10 nm) to micrometrsize (10 µm), of the particles which are usually inhaled by humans. Results and Conclusions: The results of the study shows that even during a short-term spraying of Nano Silver preparation (for 10 s) at the distance of 52 cm from the place of preparation spraying - particles of 10 nm-10 µm can be emitted into in the air. During a three-fold preparation spraying in similar conditions differences in concentration increase were observed, but in each case the particles remained in the air for a relatively long time. Med Pr 2013;64(1):57–67
Źródło:
Medycyna Pracy; 2013, 64, 1; 57-67
0465-5893
2353-1339
Pojawia się w:
Medycyna Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Nowy sektor pracowniczy – przegląd danych o nanoprodukcji i działalności badawczo-rozwojowej w dziedzinie nanotechnologii w Polsce
New sector of employment – A review of data on nanoproduction, research and development in the field of nanotechnology in Poland
Autorzy:
Popławska, Magdalena
Mikołajczyk, Urszula
Bujak-Pietrek, Stella
Powiązania:
https://bibliotekanauki.pl/articles/2164495.pdf
Data publikacji:
2015-07-27
Wydawca:
Instytut Medycyny Pracy im. prof. dra Jerzego Nofera w Łodzi
Tematy:
nanocząstki
nanotechnologia
nanoobiekty
nanomateriały
zastosowanie
skutki zdrowotne
nanoparticles
nanotechnology
nanoobjects
nanomaterials
application
health effects
Opis:
Nanotechnologia to obecnie jedna z najprężniej rozwijających się dziedzin nauki, dotycząca projektowania, wytwarzania i wykorzystania nanomateriałów. Przez pojęcie ‘nanomateriał’ rozumie się produkt zbudowany ze struktur o wymiarach nanometrowych (1–100 nm). Ze względu na niewielkie wymiary oraz unikatowe właściwości zastosowanie nanomateriałów budzi coraz większe zainteresowanie w różnych dziedzinach przemysłu i nauki. W Polsce istnieje niewiele przedsiębiorstw zajmujących się działalnością nanotechnologiczną. Dominują w tym obszarze głównie jednostki naukowe (m.in. instytuty badawcze, uczelnie wyższe czy jednostki naukowe Polskiej Akademii Nauk). Med. Pr. 2015;66(4):575–582
Nanotechnology is currently one of the fastest developing areas of science, focusing on the design, manufacture and use of nanomaterials. The term “nanomaterial” means any product made of nanometer-size (1–100 nm) structures. Due to the small size and unique properties of the applied nanomaterials there is a growing interest in their aplication in various fields of industry and science. In Poland, there are very few companies that carry on nanotechnology activities. Research institutes, universities and research units of the Polish Academy of Sciences predominate in these activities. Med Pr 2015;66(4):575–582
Źródło:
Medycyna Pracy; 2015, 66, 4; 575-582
0465-5893
2353-1339
Pojawia się w:
Medycyna Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Nanozłoto – działanie biologiczne i dopuszczalne poziomy narażenia zawodowego
Nanogold – Biological effects and occupational exposure levels
Autorzy:
Świdwińska-Gajewska, Anna M.
Czerczak, Sławomir
Powiązania:
https://bibliotekanauki.pl/articles/2164070.pdf
Data publikacji:
2017-06-27
Wydawca:
Instytut Medycyny Pracy im. prof. dra Jerzego Nofera w Łodzi
Tematy:
nanocząstki
narażenie zawodowe
nanoobiekty
toksyczność
nanozłoto
toksykokinetyka
nanoparticles
occupational exposure
nanoobjects
toxicity
nanogold
toxicokinetics
Opis:
Nanozłoto różni się właściwościami i działaniem biologicznym od złota metalicznego. Może ono znaleźć zastosowanie w wielu dziedzinach, takich jak medycyna, diagnostyka laboratoryjna czy elektronika. Z badań przeprowadzonych na zwierzętach laboratoryjnych wynika, że nanozłoto może się wchłaniać drogą oddechową i pokarmową. Może penetrować w głąb naskórka i skóry właściwej, ale nie ma dowodów, że wchłania się przez skórę. Nanoobiekty złota kumulują się głównie w wątrobie i śledzionie, ale mogą docierać do innych narządów wewnętrznych. Nanozłoto może pokonywać bariery krew–mózg i krew–łożysko. Toksykokinetyka nanozłota zależy od wielkości cząstek, kształtu oraz ładunku powierzchniowego. U zwierząt narażanych drogą inhalacyjną nanocząstki złota wywoływały niewielkie zmiany w płucach. Podawane drogą pokarmową nie powodowały negatywnych skutków zdrowotnych u gryzoni. U zwierząt, którym wstrzykiwano dootrzewnowo nanoobiekty złota, obserwowano zmiany w wątrobie i płucach. Wykazano genotoksyczność nanozłota w badaniach in vitro na komórkach, ale nie potwierdzono takiego działania u zwierząt. Nie zaobserwowano szkodliwego wpływu nanoobiektów na płód czy rozrodczość. Nie ma badań dotyczących działania rakotwórczego nanocząstek złota. Mechanizm działania toksycznego nanozłota może być związany z jego oddziaływaniem z białkami i DNA, co w efekcie prowadzi do indukowania stresu oksydacyjnego lub uszkodzeń materiału genetycznego. Wpływ nanostruktur na zdrowie człowieka nie jest jeszcze w pełni wyjaśniony. Osoby pracujące z nanomateriałami powinny zachować szczególną ostrożność i stosować istniejące zalecenia przy ocenie narażenia zawodowego na nanoobiekty. Przeprowadzona ocena ryzyka powinna stanowić podstawę do podejmowania odpowiednich działań ograniczających potencjalne narażenie na nanometale, w tym również nanozłoto. Med. Pr. 2017;68(4):545–556
Nanogold has different properties and biological activity compared to metallic gold. It can be applied in many fields, such as medicine, laboratory diagnostics and electronics. Studies on laboratory animals show that nanogold can be absorbed by inhalation and ingestion. It can penetrate deep into the epidermis and dermis, but there is no evidence that it is absorbed through the skin. Gold nanoobjects accumulate mainly in the liver and spleen, but they can also reach other internal organs. Nanogold can cross the blood–brain and blood–placenta barriers. Toxicokinetics of nanogold depends on the particle size, shape and surface charge. In animals exposure to gold nanoparticles via inhalation induces slight changes in the lungs. Exposure to nanogold by the oral route does not cause adverse health effects in rodents. In animals after injection of gold nanoobjects changes in the liver and lungs were observed. Nanogold induced genotoxic effects in cells, but not in animals. No adverse effects on the fetus or reproduction were found. There are no carcinogenicity studies on gold nanoparticles. The mechanism of toxicity may be related to the interaction of gold nanoobjects with proteins and DNA, and it leads to the induction of oxidative stress and genetic material damage. The impact of nanostructures on human health has not yet been fully understood. The person, who works with nanomaterials should exercise extreme caution and apply existing recommendations on the evaluation of nanoobjects exposure. The risk assessment should be the basis for taking appropriate measures to limit potential exposure to nanometals, including nanogold. Med Pr 2017;68(4):545–556
Źródło:
Medycyna Pracy; 2017, 68, 4; 545-556
0465-5893
2353-1339
Pojawia się w:
Medycyna Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Nanopestycydy – jasna czy ciemna strona mocy?
Nanopesticides – Light or dark side of the force?
Autorzy:
Matysiak, Magdalena
Kruszewski, Marcin
Kapka-Skrzypczak, Lucyna
Powiązania:
https://bibliotekanauki.pl/articles/2164105.pdf
Data publikacji:
2017-05-16
Wydawca:
Instytut Medycyny Pracy im. prof. dra Jerzego Nofera w Łodzi
Tematy:
nanocząstki
narażenie zawodowe
biomarkery
pestycydy
detekcja
toksyczność
nanoparticles
occupational exposure
biomarkers
pesticides
detection
toxicity
Opis:
Nanotechnologia znalazła zastosowanie w wielu gałęziach przemysłu, m.in. w rolnictwie, gdzie nanomateriały służą jako nośniki chemicznych środków ochrony roślin, a także jako substancje aktywne pestycydów. Nieznane są jednak skutki ekspozycji człowieka na działanie nanopestycydów. Grupą, której ze względu na wykonywany zawód powinno się poświęcić szczególną uwagę, są rolnicy. W niniejszej pracy podsumowano kierunki wykorzystania nanocząstek w rolnictwie, drogi narażenia pracowników rolnych na ich działanie oraz aktualny stan wiedzy na temat toksyczności nanomateriałów wobec komórek ssaków. Przedstawiono także techniki detekcji nanocząstek w środowisku pracy oraz biomarkery służące ocenie narażenia i skutków ekspozycji. Wyniki przeglądu wskazują, że użycie zdobyczy nanotechnologii w rolnictwie może przynieść wymierne korzyści w postaci zmniejszenia ilości stosowanych chemicznych środków ochrony. W literaturze nie ma jednak badań określających, czy stosowanie nanocząstek jako nośników nie zwiększa efektów szkodliwego działania pestycydów na ludzki organizm. Ponadto wyniki badań na liniach komórkowych oraz modelach zwierzęcych świadczą, że nanocząstki stosowane jako substancje aktywne mogą być toksyczne dla komórek ssaków. Zauważalny jest jednocześnie zupełny brak badań epidemiologicznych dotyczących tego zagadnienia. Wydaje się, że w najbliższym czasie skutki ekspozycji na nanopestycydy mogą wymagać szczególnej uwagi nie tylko środowiska naukowego, ale także lekarzy opiekujących się pracownikami rolnymi i ich rodzinami. Med. Pr. 2017;68(3):423–432
Nanotechnology has been used in many branches of industry, including agriculture, where nanomaterials are used as carriers of chemical plant protection compounds, as well as active ingredients. Meanwhile, the effects of nanopesticides exposure on the human body are unknown. Due to their occupation, farmers should be particularly monitored. This paper summarizes the use of nanoparticles in agriculture, the route of potential exposure for agricultural workers and the current state of knowledge of nanopesticides toxicity to mammalian cells. The authors also discuss techniques for detecting nanoparticles in the workplace, as well as biomarkers and effects of exposure. The results of this review indicate that the use of nanotechnology in agriculture can bring measurable benefits by reducing the amount of chemicals used for plant protection. However, there is no research available to determine whether or not the use of pesticide nanoformulations increases the harmful effects of pesticides. Moreover, the results of research on cell lines and in animal models suggest that nanoparticles used as active substance are toxic to mammalian cells. Interestingly, there is also a complete lack of epidemiological studies on this subject. In the nearest future the effects of exposure to nanopesticides may require a particular attention paid by scientists and medical doctors who, treat agricultural workers and their families. Med Pr 2017;68(3):423–432
Źródło:
Medycyna Pracy; 2017, 68, 3; 423-432
0465-5893
2353-1339
Pojawia się w:
Medycyna Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Nanomateriały – propozycje dopuszczalnych poziomów narażenia na świecie a normatywy higieniczne w Polsce
Nanomaterials – Proposals of occupational exposure limits in the world and hygiene standards in Poland
Autorzy:
Świdwińska-Gajewska, Anna M.
Czerczak, Sławomir
Powiązania:
https://bibliotekanauki.pl/articles/2166321.pdf
Data publikacji:
2014-11-05
Wydawca:
Instytut Medycyny Pracy im. prof. dra Jerzego Nofera w Łodzi
Tematy:
nanoobiekty
nanocząstki
narażenie zawodowe
najwyższe dopuszczalne stężenie
nanoobjects
nanoparticles
occupational exposure
maximum allowable concentration
Opis:
Obecnie nie ma prawnie obowiązujących normatywów dla substancji w postaci nanoobiektów w środowisku pracy. Istnieją różne podejścia do szacowania ryzyka i wyznaczania dopuszczalnych poziomów narażenia zawodowego. Celem niniejszego opracowania jest zestawienie dopuszczalnych poziomów narażenia w środowisku pracy zaproponowanych przez międzynarodowe organizacje i światowych ekspertów oraz podstaw i sposobów ich szacowania. W artykule przedstawiono propozycje ekspertów Krajowego Instytutu Zdrowia Publicznego i Środowiska w Holandii (RIVM), Organizacji Rozwoju Nowych Energii i Technologii Przemysłowych w Japonii (NEDO), Narodowego Instytutu Bezpieczeństwa i Higieny Pracy w USA (National Institute for Occupational Safety and Health - NIOSH), opracowania dotyczące poziomów dla nanorurek węglowych (Baytubes® i Nanocyl) Pauluhna i Luizi oraz Pochodne Poziomy Niepowodujące Zmian (derived no-effect levels - DNEL) zgodne z rozporządzeniem REACH, zaproponowane przez zespół ekspertów w ramach 7. Programu Ramowego Komisji Europejskiej pod kierunkiem prof. Vicki Stone (Engineered Nanoparticles: Review Health and Environmental Safety - ENRHES), i alternatywne szacowanie poziomów DNEL dla cząstek słabo rozpuszczalnych według Pauluhna. Biorąc pod uwagę obecnie obowiązujący sposób wyznaczania najwyższych dopuszczalnych stężeń w środowisku pracy w Polsce, można rozważyć, czy jest on adekwatny dla nanoobiektów. Być może warto przychylić się do wprowadzenia wartości odniesienia, podobnych do zaproponowanych przez RIVM, lub zdefiniowania nowej frakcji dla cząstek o wymiarach z zakresu 1-100 nm, uwzględniającej powierzchnię i aktywność cząstek, oraz wypracowania odmiennego sposobu szacowania współczynników modyfikacyjnych. Ważny, jeśli nie kluczowy pozostaje problem właściwej miary (stężenie liczbowe, powierzchniowe, liczbowy rozkład wymiarowy cząstek), a także metod i aparatury, która byłaby dostępna dla wszystkich pracodawców, żeby mogli odpowiedzialnie kontrolować ryzyko związane z narażeniem na nanomateriały w środowisku pracy. Med. Pr. 2013;64(6):829–845
Currently, there are no legally binding workplace exposure limits for substances in the form of nanoobjects. There are different approaches to risk assessment and determination of occupational exposure limits. The purpose of this article is to compare exposure levels in the work environment proposed by international organizations and world experts, as well as the assumptions and methods used for their estimation. This paper presents the proposals of the National Institute for Public Health and the Environment in the Netherlands (RIVM), the New Energy and Industrial Technology Development Organization in Japan (NEDO) and the National Institute for Occupational Safety and Health in the USA (NIOSH). The authors also discuss the reports on the levels for carbon nanotubes (Baytubes® and Nanocyl) proposed by Pauluhn and Luizi, the derived no-effect levels (DNEL) complying with the REACH Regulation, proposed by experts under the 7th Framework Programme of the European Commission, coordinated by Professor Vicki Stone (ENRHES), and alternative estimation levels for poorly soluble particles by Pauluhn. The issue was also raised whether the method of determining maximum admissible concentrations in the work environment, currently used in Poland, is adequate for nanoobjects. Moreover, the introduction of nanoreference values, as proposed by RIVM, the definition of a new fraction for particles of 1-100 nm, taking into account the surface area and activity of the particles, and an adequate estimation of uncertainty factors seem to be worth considering. Other important, if not key issues are the appropriate measurement (numerical concentration, surface concentration, particle size distribution), as well as the methodology and equipment accessibility to all employers responsible for a reliable risk assessment of exposure to nanoparticles in the work environment. Med Pr 2013;64(6):829–845
Źródło:
Medycyna Pracy; 2013, 64, 6; 829-845
0465-5893
2353-1339
Pojawia się w:
Medycyna Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Nanosrebro – dopuszczalne poziomy narażenia zawodowego
Nanosilver – Occupational exposure limits
Autorzy:
Świdwińska-Gajewska, Anna M.
Czerczak, Sławomir
Powiązania:
https://bibliotekanauki.pl/articles/2165388.pdf
Data publikacji:
2015-07-27
Wydawca:
Instytut Medycyny Pracy im. prof. dra Jerzego Nofera w Łodzi
Tematy:
nanocząstki
narażenie zawodowe
srebro
nanoobiekty
NDS
nanosrebro
nanoparticles
occupational exposure
silver
nanoobjects
MAC-TWA
nanosilver
Opis:
Nanosrebro historycznie było określane mianem srebra koloidalnego i składa się z cząstek w rozmiarze poniżej 100 nm. Nanocząstki srebra są wykorzystywane w wielu technologiach do tworzenia szerokiego zakresu produktów. Dzięki właściwościom antybakteryjnym znajdują zastosowanie m.in. w wyrobach medycznych (środki opatrunkowe), tekstyliach (odzież dla sportowców, skarpety), tworzywach sztucznych czy materiałach budowlanych (farby). Srebro koloidalne przez wielu uważane jest za idealny środek w walce z drobnoustrojami chorobotwórczymi, który w przeciwieństwie do antybiotyków nie wywołuje skutków ubocznych. Wyniki badań toksykologicznych pokazują jednak, że nanosrebro nie jest obojętne dla organizmu. W narażeniu inhalacyjnym nanocząstki srebra działają szkodliwie głównie na wątrobę i płuca u szczurów. Za toksyczność nanocząstek w dużej mierze odpowiedzialny jest stres oksydacyjny wywołany przez reaktywne formy tlenu, co przyczynia się do cyto- i genotoksycznego działania nanosrebra. U podłoża molekularnego mechanizmu toksyczności nanosrebra leży aktywność powierzchni nanocząstek, która łatwo ulega utlenieniu. Prowadzi to do uwalniania jonów srebra o znanym działaniu toksycznym. Narażenie zawodowe na srebro nanocząstkowe może występować w procesach jego wytwarzania, formulacji, a także stosowania, szczególnie podczas rozpylania. W Polsce, podobnie jak na świecie, nie obowiązują osobne normatywy higieniczne dla nanomateriałów. W niniejszym opracowaniu podjęto próbę oszacowania wartości najwyższego dopuszczalnego stężenia (NDS) dla srebra – frakcji nanoobiektów, która wyniosła: 0,01 mg/m³. Autorzy stoją na stanowisku, że obecnie obowiązująca wartość NDS dla frakcji wdychalnej srebra metalicznego (0,05 mg/m³) nie zapewnia wystarczającej ochrony przed szkodliwym działaniem srebra w postaci nanoobiektów. Med. Pr. 2015;66(3):429–442
Historically, nanosilver has been known as colloidal silver composed of particles with a size below 100 nm. Silver nanoparticles are used in many technologies, creating a wide range of products. Due to antibacterial properties nanosilver is used, among others, in medical devices (wound dressings), textiles (sport clothes, socks), plastics and building materials (paints). Colloidal silver is considered by many as an ideal agent in the fight against pathogenic microorganisms, unlike antibiotics, without side effects. However, in light of toxicological research, nanosilver is not inert to the body. The inhalation of silver nanoparticles have an adverse effect mainly on the liver and lung of rats. The oxidative stress caused by reactive oxygen species is responsible for the toxicity of nanoparticles, contributing to cytotoxic and genotoxic effects. The activity of the readily oxidized nanosilver surface underlies the molecular mechanism of toxicity. This leads to the release of silver ions, a known harmful agent. Occupational exposure to silver nanoparticles may occur in the process of its manufacture, formulation and also usage during spraying, in particular. In Poland, as well as in other countries of the world, there is no separate hygiene standards applicable to nanomaterials. The present study attempts to estimate the value of MAC-TWA (maximum admissible concentration – the time-weighted average) for silver – a nano-objects fraction, which amounted to 0.01 mg/m³. The authors are of the opinion that the current value of the MAC-TWA for silver metallic – inhalable fraction (0.05 mg/m³) does not provide sufficient protection against the harmful effects of silver in the form of nano-objects. Med Pr 2015;66(3):429–442
Źródło:
Medycyna Pracy; 2015, 66, 3; 429-442
0465-5893
2353-1339
Pojawia się w:
Medycyna Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Nanosrebro – szkodliwe skutki działania biologicznego
Nanosilver – Harmful effects of biological activity
Autorzy:
Świdwińska-Gajewska, Anna M.
Czerczak, Sławomir
Powiązania:
https://bibliotekanauki.pl/articles/2166196.pdf
Data publikacji:
2015-02-20
Wydawca:
Instytut Medycyny Pracy im. prof. dra Jerzego Nofera w Łodzi
Tematy:
nanocząstki
srebro
nanoobiekty
działanie toksyczne
nanosrebro
srebro koloidalne
silver
nanoparticles
toxicity
nanoobjects
nanosilver
colloidal silver
Opis:
Nanosrebro, zwane także srebrem koloidalnym, od wieków było znane i stosowane do zwalczania chorób i przedłużania trwałości produktów spożywczych. Najczęściej występuje w postaci zawiesiny, składającej się z cząstek wielkości < 100 nm. Dzięki swoim specyficznym właściwościom nanocząstki srebra są wykorzystywane w wielu technologiach do tworzenia wyrobów medycznych, tekstyliów, materiałów przewodzących czy ogniw fotowoltaicznych. Wzrastająca popularność zastosowania nanosrebra przyczynia się do zwiększenia liczby osób pracujących w narażeniu na tę substancję. Potencjalnymi drogami narażenia jest droga inhalacyjna, pokarmowa i dermalna. Nanocząstki srebra mogą być wchłaniane przez płuca, jelita, a także przez skórę do krwiobiegu i w ten sposób docierać do narządów wewnętrznych (wątroby, nerek, śledziony, mózgu, serca i jąder). Nanosrebro może wywoływać lekkie podrażnienie oczu i skóry, może także działać jak łagodny alergen na skórę. W narażeniu inhalacyjnym nanocząstki srebra działają głównie na płuca i wątrobę. Wykazano, że nanocząstki srebra mogą działać genotoksycznie na komórki ssaków. Istnieją niepokojące doniesienia na temat szkodliwego działania nanocząstek srebra na rozrodczość zwierząt eksperymentalnych. Narażenie na nanocząstki srebra może działać neurotoksycznie i wpływać na funkcje poznawcze, wywołując zaburzenia pamięci krótkotrwałej i pamięci roboczej. Obowiązujacy obecnie w Polsce normatyw higieniczny dla frakcji wdychalnej srebra (najwyższe dopuszczalne stężenie) wynosi 0,05 mg/m³. W świetle wyników badań toksykologicznych nad działaniem biologicznym nanocząstek srebra uzasadniona wydaje się potrzeba zaktualizowania normatywów higienicznych dla srebra z wyodrębnieniem frakcji nanocząstek. Med. Pr. 2014;65(6):831–845
Nanosilver, also identified as colloidal silver, has been known and used for ages to combat diseases or prolong food freshness. It usually occurs in the form of a suspension consisting of particles of size < 100 nm. Due to its specific properties, silver nanoparticles are used in many technologies to produce medical devices, textiles, conductive materials or photovoltaic cells. The growing popularity of nanosilver applications increases the number of people occupationally exposed to this substance. Potential exposure routes for silver nanoparticles are through dermal, oral and inhalation pathways. Silver nanoparticles may be absorbed through the lungs, intestine, and through the skin into circulation and thus may reach such organs as the liver, kidney, spleen, brain, heart and testes. Nanosilver may cause mild eyes and skin irritations. It can also act as a mild skin allergen. Inhalation of silver nanoparticles mainly affects the lungs and liver. It has been demonstrated that silver nanoparticles may be genotoxic to mammalian cells. There are some alarming reports on the adverse effects of silver nanoparticles on reproduction of experimental animals. Exposure to silver nanoparticles may exert a neurotoxic effect and affect cognitive functions, causing the impairment of short-term and working memory. Maximum admissible concentration (MAC) for the inhalable fraction of silver of 0.05 mg/m³ is currently binding in Poland. In light of toxicological studies of silver nanoparticles it seems reasonable to update the hygiene standards for silver with nanoparticles as a separate fraction. Med Pr 2014;65(6):831–845
Źródło:
Medycyna Pracy; 2014, 65, 6; 831-845
0465-5893
2353-1339
Pojawia się w:
Medycyna Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Nanocząstki ditlenku tytanu – dopuszczalne poziomy narażenia zawodowego
Titanium dioxide nanoparticles: Occupational exposure limits
Autorzy:
Świdwińska-Gajewska, Anna M.
Czerczak, Sławomir
Powiązania:
https://bibliotekanauki.pl/articles/2166219.pdf
Data publikacji:
2014-10-30
Wydawca:
Instytut Medycyny Pracy im. prof. dra Jerzego Nofera w Łodzi
Tematy:
ditlenek tytanu
nanoobiekty
nanocząstki
narażenie zawodowe
najwyższe dopuszczalne stężenie
titanium dioxide
nanoobjects
nanoparticles
occupational exposure
maximum admissible concentration
Opis:
Ditlenek tytanu (TiO₂) jest produkowany w Polsce jako substancja wielkotonażowa. Wykorzystywany jest przede wszystkim jako pigment do farb i lakierów, tworzyw sztucznych oraz papieru, ale także jako dodatek do żywności i farmaceutyków. Coraz szersze zastosowanie znajdują nanocząstki TiO₂ – głównie w kosmetykach, tkaninach i tworzywach sztucznych – jako bloker promieniowania ultrafioletowego. Zwiększa się tym samym ryzyko narażenia pracowników na nanocząstki ditlenku tytanu w środowisku pracy. Ze względu na brak odpowiednich metod pomiarowych oraz wyodrębnionej frakcji nanoobiektów, dla których mogą być opracowywane normatywy higieniczne, nie ustalono najwyższych dopuszczalnych stężeń w powietrzu środowiska pracy dla cząstek < 100 nm, które w głównej mierze są odpowiedzialne za potencjalnie szkodliwe działanie ditlenku tytanu. Eksperci Narodowego Instytutu Bezpieczeństwa i Higieny Pracy (National Institute for Occupational Safety and Health – NIOSH) zaproponowali dopuszczalny poziom narażenia dla nanocząstek ditlenku tytanu w wysokości 0,3 mg/m³, a eksperci Organizacji Rozwoju Nowych Energii i Technologii Przemysłowych (New Energy and Industrial Technology Development Organization – NEDO) – 0,6 mg/m³. Autorzy niniejszego opracowania na podstawie dostępnych danych i w oparciu o obowiązujące metody wyznaczania wartości normatywów higienicznych w Polsce oszacowali, że wartość najwyższego dopuszczalnego stężenia (NDS) w powietrzu środowiska pracy dla nanocząstek TiO₂ może wynosić 0,3 mg/m³. Med. Pr. 2014;65(3):407–418
Titanium dioxide (TiO₂) is produced in Poland as a high production volume chemical (HPVC). It is used mainly as a pigment for paints and coatings, plastics, paper, and also as additives to food and pharmaceuticals. Titanium dioxide nanoparticles are increasingly applied in cosmetics, textiles and plastics as the ultraviolet light blocker. This contributes to a growing occupational exposure to TiO₂ nanoparticles. Nanoparticles are potentially responsible for the most adverse effects of titanium dioxide. Due to the absence of separate fraction of nanoobjects and appropriate measurement methods the maximum admissible concentrations (MAC) for particles < 100 nm and nano-TiO₂ cannot be established. In the world there are 2 proposals of occupational exposure levels for titanium dioxide nanoparticles: 0.3 mg/m³, proposed by the National Institute for Occupational Safety and Health (NIOSH), and 0.6 mg/m³, proposed by experts of the New Energy and Industrial Technology Development Organization (NEDO). The authors of this article, based on the available data and existing methods for hygiene standards binding in Poland, concluded that the MAC value of 0.3 mg/m³ for nanoparticles TiO₂ in the workplace air can be accepted. Med Pr 2014;65(3):407–418
Źródło:
Medycyna Pracy; 2014, 65, 3; 407-418
0465-5893
2353-1339
Pojawia się w:
Medycyna Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Prawna ochrona zdrowia pracownika w środowisku pracy z nanocząstkami. Uwagi na temat zasadności wprowadzenia europejskich regulacji prawnych
Legal protection of employee health when working with nanoparticles. Comments on the appropriateness of introducing European legal regulations
Autorzy:
Jarota, Maciej
Powiązania:
https://bibliotekanauki.pl/articles/2162770.pdf
Data publikacji:
2019-09-18
Wydawca:
Instytut Medycyny Pracy im. prof. dra Jerzego Nofera w Łodzi
Tematy:
nanocząstki
narażenie zawodowe
nanotechnologia
nanomateriały
środowisko pracy
zdrowie pracownika
nanoparticles
occupational exposure
nanotechnology
nanomaterials
work environment
employee health
Opis:
Celem publikacji jest analiza regulacji prawnych odnoszących się do bezpieczeństwa i higieny pracy w kontekście rozwoju technologii w zakresie nanomateriałów. Autor podejmuje refleksję na temat możliwości wprowadzenia na poziomie Unii Europejskiej konstrukcji prawnych umożliwiających zabezpieczenie zdrowia pracownika w środowisku pracy związanym z nanocząstkami. Pracodawca w zakresie swoich obowiązków powinien przedsięwziąć niezbędne środki do zapewnienia bezpieczeństwa i ochrony zdrowia pracowników, włącznie z zapobieganiem zagrożeniom związanym z wykonywaniem czynności służbowych, informowaniem oraz szkoleniem, jak również zapewnieniem niezbędnych ram organizacyjnych i środków. Różne organizacje i instytuty badawcze zajmują się określeniem liczbowych limitów narażenia zawodowego na nanocząstki, jednak właściwy kierunek ochrony zdrowia pracowników przed ekspozycją na nie jest jeszcze na wczesnym etapie rozpoznania. Istotne wydaje się zbadanie, w jakim stopniu obecnie stosowane metody i narzędzia oceny ryzyka są aktualne, a w jakich obszarach należy je dostosować do charakterystycznych cech nanocząstek. W artykule próbowano odpowiedzieć na pytanie, czy obecna ochrona prawna pracownika w kontekście ryzyka i zagrożeń, jakie niesie ze sobą nanotechnologia, jest wystarczająca. Med. Pr. 2019;70(5):633–647
The aim of this publication is to analyze legal regulations related to occupational health and safety in the context of the development of nanomaterials technology. The author reflects on the possibility of introducing legal structures at the European Union level to facilitate protecting employee health in the work environment related to nanoparticles. Employers, in the scope of their duties, should take the necessary measures to ensure the safety and health of employees, including the prevention of threats related to the performance of official duties, information and training, as well as providing the necessary organizational framework and resources. Different organizations or research institutes are working on researching the numerical occupational exposure limits for nanoparticles, but the right direction to protect workers’ health from exposure to nanoparticles is still at an early stage of diagnosis. It seems important to study the extent to which current methods and tools for risk assessment are up to date, and the elements that should be adapted to the characteristics of nanoparticles. The paper attempts to answer the question of whether the current legal protection of employees, in the context of risks and threats posed by nanotechnology, is sufficient. Med Pr. 2019;70(5):633–47
Źródło:
Medycyna Pracy; 2019, 70, 5; 633-647
0465-5893
2353-1339
Pojawia się w:
Medycyna Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Nowe zagrożenie zawodowe i środowiskowe – nanoplastik
A new occupational and environmental hazard – nanoplastic
Autorzy:
Rakowski, Michał
Grzelak, Agnieszka
Powiązania:
https://bibliotekanauki.pl/articles/2087403.pdf
Data publikacji:
2020-12-03
Wydawca:
Instytut Medycyny Pracy im. prof. dra Jerzego Nofera w Łodzi
Tematy:
narażenie zawodowe
narażenie środowiskowe
toksykologia
narażenie na nanocząstki
biodegradacja
nanoplastik
occupational exposure
environmental exposure
toxicology
nanoparticles exposure
biodegradation
nanoplastic
Opis:
Problemy wynikające z gromadzenia się w środowisku plastikowych odpadów stały się globalne. Apele o zaprzestanie wykorzystywania jednorazowych słomek do napojów czy plastikowych sztućców nie pojawiły się bez powodu – rocznie produkuje się 320 mln ton wyrobów plastikowych, z których 40% to przedmioty jednorazowego użytku. Coraz więcej państw i prywatnych przedsiębiorstw rezygnuje z przedmiotów plastikowych na rzecz ich biodegradowalnych zamienników, np. tekturowych słomek do napojów. W środowisku plastikowe odpady podlegają wielu oddziaływaniom fizykochemicznym oraz biodegradacji, w której biorą udział bakterie. Bytując na odpadach syntetycznych, powodują zmniejszenie ich rozmiarów i zwiększają ich dyspersję w środowisku. Małe, niewidoczne gołym okiem cząstki plastiku noszą nazwę nanoplastiku. Nanoplastik nie jest obojętny dla organizmów żywych. Z uwagi na swoje rozmiary jest pobierany wraz z pokarmem przez zwierzęta i przekazywany w łańcuchu troficznym. Zdolność nanoplastiku do przenikania barier organizmu indukuje efekty biologiczne o rozmaitych skutkach. Wiele ośrodków prowadzi badania na temat nanoplastiku, jednak ich wyniki wciąż stanowią ułamek danych potrzebnych do jednoznacznego wnioskowania o jego wpływie na organizmy żywe. Brakuje także danych dotyczących bezpośredniego narażenia na zanieczyszczenie nanoplastikiem w miejscach pracy, szkołach i miejscach użyteczności publicznej, norm opisujących dopuszczalne stężenie nanoplastiku w produktach spożywczych i wodzie pitnej oraz badań in vitro na nanocząstkach innych niż polistyrenu. Uzupełnienie dostępnych danych pozwoli obiektywnie ocenić zagrożenia płynące ze strony ekspozycji organizmów na nanoplastik. Med. Pr. 2020;71(6):743–756
Problems arising from the accumulation of plastic waste in the environment have become global. Appeals to stop the usage of disposable drinking straws or plastic cutlery did not come out without reason – 320 million tons of plastic products are produced annually, of which 40% are disposable items. More and more countries and private enterprises are giving up these types of items in favor of their biodegradable substitutes, e.g., cardboard drinking straws. Plastic waste in the environment is subject to a number of physicochemical interactions and biodegradation in which bacteria are involved. By using synthetic waste, they reduce the size of plastic garbage while increasing its dispersion in the environment. Small plastic particles, invisible to the naked eye, are called nanoplastic. Nanoplastic is not inert to living organisms. Due to its size, it is taken up with food by animals and passed on in the trophic chain. The ability to penetrate the body’s barriers through nanoplastic leads to the induction of biological effects with various outcomes. Research studies on the interaction of nanoplastic with living organisms are carried out in many laboratories; however, their number is still a drop in the ocean of the data needed to draw clear-cut conclusions about the impact of nanoplastic on living organisms. There is also no data on the direct exposure to nanoplastic contamination at workplaces, schools and public utilities, standards describing the acceptable concentration of nanoplastic in food products and drinking water, and in vitro tests on nanoparticles other than polystyrene nanoparticles. Complementing the existing data will allow assessing the risks arising from the exposure of organisms to nanoplastic. Med Pr. 2020;71(6):743–56
Źródło:
Medycyna Pracy; 2020, 71, 6; 743-756
0465-5893
2353-1339
Pojawia się w:
Medycyna Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Fulereny – charakterystyka substancji, działanie biologiczne i dopuszczalne poziomy narażenia zawodowego
Fullerenes: Characteristics of the substance, biological effects and occupational exposure levels
Autorzy:
Świdwińska-Gajewska, Anna M.
Czerczak, Sławomir
Powiązania:
https://bibliotekanauki.pl/articles/2164392.pdf
Data publikacji:
2016-06-09
Wydawca:
Instytut Medycyny Pracy im. prof. dra Jerzego Nofera w Łodzi
Tematy:
nanocząstki
narażenie zawodowe
najwyższe dopuszczalne stężenie
nanomateriały
wartości dopuszczalnych stężeń
fuleren
nanoparticles
occupational exposure
occupational exposure limit
nanomaterials
occupational exposure level
fullerene
Opis:
Fulereny są cząsteczkami złożonymi z parzystej liczby atomów węgla o sferycznej, kulistej lub elipsoidalnej, zamkniętej strukturze przestrzennej. Najbardziej popularnym fulerenem jest cząsteczka C60 o kulistej budowie – ściętego dwudziestościanu foremnego, przypominającego piłkę nożną. Fulereny znajdują szerokie zastosowanie przede wszystkim w diagnostyce i medycynie, ale również w przemyśle elektronicznym i energetycznym. Narażenie zawodowe na fuleren może wystąpić głównie przy jego produkcji. Stężenia w środowisku pracy fulerenów, opisane w literaturze, wynosiły 0,12–1,2 μ/m³ dla frakcji nanocząstek (< 100 nm), co może świadczyć o niewielkim narażeniu. Fuleren jednak w dużej części aglomeruje do większych cząstek. Wchłanianie fulerenu drogą pokarmową i oddechową jest niewielkie oraz nie jest on absorbowany przez skórę. Po podaniu dożylnym fuleren może kumulować się w wątrobie oraz w mniejszym stopniu w śledzionie lub nerkach. Nie obserwowano działania fulerenu drażniącego ani uczulającego na skórę w badaniach na zwierzętach, jedynie słabe działanie drażniące na oczy. W badaniach inhalacyjnych na gryzoniach fuleren wywoływał przejściowe zmiany zapalne w płucach. Narażenie drogą pokarmową nie wywoływało większych negatywnych skutków. Fuleren nie wykazywał działania mutagennego ani genotoksycznego w badaniach eksperymentalnych. Nie ma opublikowanych danych dotyczących rakotwórczego działania nanocząstek fulerenu u ludzi i zwierząt. Istnieją natomiast doniesienia o możliwym szkodliwym wpływie fulerenu na płód u myszy po podaniu dootrzewnowym lub dożylnym. Fuleren w czystej postaci charakteryzuje się słabym wchłanianiem i niską toksycznością oraz nie stanowi zagrożenia w środowisku pracy. Autorzy niniejszej pracy stoją na stanowisku, że nie ma podstaw do wyznaczenia najwyższego dopuszczalnego stężenia (NDS) fulerenu C60 w niezmodyfikowanej formie. Pochodne fulerenów, z uwagi na odmienne właściwości, wymagają osobnej analizy pod względem szacowania ryzyka zawodowego. Med. Pr. 2016;67(3):397–410
Fullerenes are molecules composed of an even number of carbon atoms of a spherical or an ellipsoidal, closed spatial structure. The most common fullerene is the C60 molecule with a spherical structure – a truncated icosahedron, compared to a football. Fullerenes are widely used in the diagnostics and medicine, but also in the electronics and energy industry. Occupational exposure to fullerene may occur during its production. The occupational concentrations of fullerenes reached 0.12–1.2 μ/m³ for nanoparticles fraction (< 100 nm), which may evidence low exposure levels. However, fullerene mostly agglomerates into larger particles. Absorption of fullerene by oral and respiratory routes is low, and it is not absorbed by skin. After intravenous administration, fullerene accumulates mainly in the liver but also in the spleen and the kidneys. In animal experiments there was no irritation or skin sensitization caused by fullerene, and only mild irritation to the eyes. Fullerene induced transient inflammation in the lungs in inhalation studies in rodents. Oral exposure does not lead to major adverse effects. Fullerene was not mutagenic, genotoxic or carcinogenic in experimental research. However, fullerene may cause harmful effects on the mice fetus when administered intraperitoneally or intravenously. Pristine C60 fullerene is characterized by poor absorption and low toxicity, and it does not pose a risk in the occupational environment. The authors of this study are of the opinion that there is no ground for estimating the maximum allowable concentration (NDS) of pristine fullerene C60. Fullerene derivatives, due to different characteristics, require separate analysis in terms of occupational risk assessment. Med Pr 2016;67(3):397–410
Źródło:
Medycyna Pracy; 2016, 67, 3; 397-410
0465-5893
2353-1339
Pojawia się w:
Medycyna Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Emisja cząstek o rozmiarach nanometrowych podczas wybranych procesów obróbki materiałów budowlanych
Emission of nanometer size particles during selected processes with construction materials using
Autorzy:
Bujak-Pietrek, Stella
Mikołajczyk, Urszula
Powiązania:
https://bibliotekanauki.pl/articles/2162603.pdf
Data publikacji:
2019-02-28
Wydawca:
Instytut Medycyny Pracy im. prof. dra Jerzego Nofera w Łodzi
Tematy:
materiały budowlane
cząstki ultradrobne
stężenie liczbowe cząstek
stężenie powierzchniowe cząstek
rozkład wymiarowy cząstek
narażenie na nanocząstki
construction materials
ultrafine particles
particle number concentration
particle surface area concentration
nanoparticles exposure
Opis:
Wstęp Procesy użytkowania i obróbki materiałów budowlanych zawierających nanomateriały mogą być związane z emisją do środowiska pracy dużej liczby cząstek o wymiarach nanometrowych, które są potencjalnym źródłem narażenia zawodowego na te struktury. Celem pracy była ocena emisji nanocząstek i cząstek ultradrobnych podczas wybranych procesów obróbki materiałów budowlanych. Materiał i metody Badania przeprowadzono na stanowiskach ścierania i przesypywania materiałów budowlanych, stosując 2 produkty – nanozaprawę oraz nanobeton. Pomiary wykonano z zastosowaniem następującej aparatury: mierników DiSCmini, licznika GRIMM 1.109 i monitora DustTrak. Analizowano stężenia liczbowe, powierzchniowe i masowe cząstek oraz ich rozkłady wymiarowe. Wyniki Pomiary przeprowadzone za pomocą DiSCmini wykazały, że średnie stężenie liczbowe cząstek podczas analizowanych procesów mieściło się w zakresie 1,4×104−1,0×105 cząstek/cm3 i było najwyższe podczas ścierania nanozaprawy. Średnie średnice cząstek emitowanych podczas procesów były mniejsze (28,9−47,1 nm w zależności od procesu) niż średnice cząstek tła. Jednocześnie obserwowano wzrost średniej wartości stężenia powierzchniowego cząstek proporcjonalny do liczby cząstek, którego największą wartość – 255,9 μm2/cm3 – stwierdzono podczas ścierania nanozaprawy. Z analizy rozkładów wymiarowych (GRIMM 1.109) wynika, że zakres wymiarów cząstek uwalnianych w omawianych procesach był szeroki, jednak w przypadku ich największej liczby wynosił 60−145 nm. Analiza udziału masowego (DustTrak) poszczególnych frakcji wymiarowych aerozolu wykazała, że udział cząstek < 1 μm wynosił przynajmniej 50% ogółu analizowanych cząstek. Wnioski Podczas badanych procesów obserwowano duży wzrost wszystkich analizowanych parametrów opisujących emisję cząstek ultradrobnych. Pozwala to wnioskować, że cząstki emitowane podczas obróbki materiałów budowlanych zawierających nanostruktury mogą stanowić potencjalny czynnik ryzyka zdrowotnego u osób narażonych na te materiały. Med. Pr. 2019;70(1):67–88
Background The aim of the presented work was the assessment of occupational exposure to nanoparticles and ultrafine particles during selected processes of using construction materials. Material and Methods The tests were carried out at the following workplaces: abrasion and pouring of 2 products – nanomortar and nanocrete. Measurements were carried out using the following devices: DiSCmini measurer, GRIMM 1.109 optical counter and DustTrak monitor. The number, surface area, mass concentration and size distribution were analyzed. Results DiSCmini measurements showed that the mean number concentration of particles during the analyzed processes ranged of 1.4×104–1.0×105 particles/cm3, and the highest one was during nanomortar abrasion. The mean particles diameters during the processes ranged 28.9−47.1 nm depending on the process. An increase in the average value of the particles surface area concentration was observed, the largest value was found during nanomortar abrasion – 255.9 μm2/cm3. The size distributions analysis (GRIMM 1.109) showed that the dimensions of particles released in the processes had a wide range, however the majority of particles were in the range of 60–145 nm. The analysis of the mass concentration (DustTrak) showed that the fraction of particles < 1 μm was minimum 50% of the total analyzed particles during the process. Conclusions During the processes under study, a large increase in all analyzed parameters describing the emission of ultrafine particles was observed. This allows to conclude that the smallest particles emitted during the using of nanostructures containing construction materials may be a potential health risk factor for people exposed to these materials. Med Pr. 2019;70(1):67–88
Źródło:
Medycyna Pracy; 2019, 70, 1; 67-88
0465-5893
2353-1339
Pojawia się w:
Medycyna Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-13 z 13

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies