Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "mixed data" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Small Area Estimation Under a Mixture Model
Autorzy:
Chandra, Hukum
Bathla, HVL
Sud, U.C.
Powiązania:
https://bibliotekanauki.pl/articles/465788.pdf
Data publikacji:
2010
Wydawca:
Główny Urząd Statystyczny
Tematy:
Linear mixed model
Small area estimation
EBLUP
Zero-inflated data
mixture model
Opis:
Small area estimation (SAE) under a linear mixed model may not be efficient if data contain substantial proportion of zeros than would be expected under standard model assumptions (hereafter zero-inflated data). We discuss the SAE for zero-inflated data under a mixture model (Fletcher et al., 2005 and Karlberg, 2000) that account for excess zeros in the data. Our results from simulation studies show that mixture model based approach for SAE works well and produces an efficient set of small area estimates. An application to real survey data from the National Sample Survey Organisation of India demonstrates the satisfactory performance of the approach.
Źródło:
Statistics in Transition new series; 2010, 11, 3; 76-89
1234-7655
Pojawia się w:
Statistics in Transition new series
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Percentile-Adjusted Estimation of Poverty Indicators for Domains Under Outlier Contamination
Autorzy:
Veijanen, Ari
Lehtonen, Risto
Powiązania:
https://bibliotekanauki.pl/articles/466042.pdf
Data publikacji:
2011
Wydawca:
Główny Urząd Statystyczny
Tematy:
small area estimation
poverty indicator
income data
bias correction
auxiliary information
mixed model
prediction
Opis:
Traditional estimation of poverty and inequality indicators, such as the Gini coefficient, for regions does not currently use auxiliary information or models fitted to income survey data. A predictor-type estimator constructed from ordinary mixed model predictions is not necessarily useful, as the predictions have too small spread for estimation of income statistics. Ordinary bias corrections are aimed at correcting the expectation of predictions, but poverty indicators would not be affected at all by a correction involving multiplication of predictions. We need a method improving the shape of the distribution of predictions, as poverty indicators describe differences of income between people. We therefore introduce a transformation bringing the percentiles of transformed predictions closer to the percentiles of sample values. The experiments show that the transformation results in smaller MSE of a predictor. If unit-level data from population are not available, the marginal domain frequencies of qualitative auxiliary variables can be successfully incorporated into a new calibration-based predictor-type estimator. The results are based on design-based simulation experiments where we use a population generated from an EU-wide income survey. The study is a part of the AMELI project funded by the European Union under the Seventh Framework Programme for research and technological development (FP7).
Źródło:
Statistics in Transition new series; 2011, 12, 2; 345-356
1234-7655
Pojawia się w:
Statistics in Transition new series
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies