Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "liczba skupień" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Kryteria wyboru liczby skupień w binarnym modelu klas ukrytych – analiza symulacyjna
Criteria for Choosing the Number of Clusters of the Binary Latent Class Model – Simulation Analysis
Autorzy:
Kapłon, Robert
Powiązania:
https://bibliotekanauki.pl/articles/1827225.pdf
Data publikacji:
2010-03-31
Wydawca:
Główny Urząd Statystyczny
Tematy:
analiza klas ukrytych
liczba skupień
kryteria informacyjne
analiza symulacyjna
latent class analysis
the number of clusters
information criteria
simulations
Opis:
Wykorzystanie analizy klas ukrytych (LCA) wymaga przyjęcia a priori liczby klas. W celu rozstrzygnięcia, ile ma ich być, można wykorzystać kryteria informacyjne. Procedura selekcji sprowadza się do: szacowania kilku modeli o różnej liczbie klas, obliczenia wartości kryterium informacyjnego oraz wyboru modelu, dla którego odnotowano najmniejszą wartość tego kryterium. Ponieważ istnieje wiele kryteriów informacyjnych, więc należy zadecydować, które powinno rozstrzygać. Niestety, nie można jednoznacznie wskazać na konkretne kryterium, gdyż w zależności od klasy modelu, zmienia się ich wiarygodność. Taki wniosek wynika z badań symulacyjnych. Biorąc pod uwagę fakt, że najczęściej badania takie dotyczyły mieszanek rozkładów normalnych, dlatego celem niniejszego opracowania jest rozszerzenie tych badań o analizę klas ukrytych.
When using latent class analysis the number of clusters need to be known in advance. In order to decide on this, one can use information criteria. In such a case selection procedure is as follows: estimating a few models with different number of classes, computing information criteria and choosing a model for which a criterion takes the smallest value. Because there are many information criteria one need to determine which of them ought to be decisive. Unfortunately, by virtue of the differences among these criteria, their reliability alter depending on model class. Simulations confirm it as well. Taking into account the fact that simulations mainly concern finite mixtures of normal density functions, therefore in this paper we broaden research to latent class analysis.
Źródło:
Przegląd Statystyczny; 2010, 57, 1; 66-84
0033-2372
Pojawia się w:
Przegląd Statystyczny
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Indeks wyboru liczby skupień w zbiorze danych
Index of the Choice of the Number of Clusters
Autorzy:
Korzeniewski, Jerzy
Powiązania:
https://bibliotekanauki.pl/articles/422648.pdf
Data publikacji:
2014
Wydawca:
Główny Urząd Statystyczny
Tematy:
analiza skupień
liczba skupień w zbiorze danych
indeks Calińskiego-Harabasza
indeks Gap
cluster analysis
number of clusters In a data set
Caliński-Harabasz index
Gap index
Opis:
W artykule zaproponowany jest nowy indeks wyznaczający liczbę skupień w zbiorze danych opisanych przez zmienne ciągłe. Indeks oparty jest na wielostopniowym dzieleniu zbioru danych (lub jego części) na dwa skupienia i sprawdzaniu czy podział taki należy zachować czy pominąć. Kryterium sprawdzającym jest indeks Randa przy pomocy którego oceniana jest zgodność podziału pierwotnego na dwa skupienia z podziałem na dwa skupienia zbioru węższego, składającego się ze skupienia mniejszego z podziału pierwotnego i 1/3 skupienia większego z podziału pierwotnego. Podziały dokonywane są przy pomocy metody k-średnich (dla k=2) z wielokrotnym losowym wyborem punktów startowych. Efektywność nowego indeksu została zbadana w obszernym eksperymencie na kilku tysiącach zbiorów danych wygenerowanych w postaci struktur skupień o różnej liczbie zmiennych, skupień, względnej liczebności skupień i różnych wariantach skorelowania zmiennych wewnątrz skupień. Ponadto, zmienny był również stopień separowalności skupień – kontrolowany według algorytmu OCLUS. Podstawą oceny efektywności było porównanie z dwoma innymi indeksami liczby skupień, mającymi w literaturze przedmiotu opinię jednych z najlepszych spośród dotychczas opracowanych tj. indeksem Calińskiego-Harabasza oraz indeksem Gap. Efektywność zaproponowanego indeksu jest znacznie wyższa od obu konkurencyjnych indeksów w przypadkach niezbyt wyraźnej struktury skupień.
In the article a new index for determining the number of clusters in a data set is proposed. The index is based on multiple division of the data set (or a part of it) into two clusters and checking if this division should be retained or neglected. The checking criterion is the Rand index by means of which the extent to which the primary division and the secondo division of the narrower subset consisting of the smaller cluster from the primary division and 1/3 of the bigger cluster coincide. The divisions are made by means of the classical k-means (for k=2) with multiple random choice of starting points. The efficiency of the new index was examined in a broad experiment on a couple of thousands of data sets generated to possess cluster structures with different number of variables, clusters, cluster densities and different variants of within cluster correlation. Moreover, the cluster overlap controlled according to the OCLUS algorithm was also varied. A basis for efficiency assessment was the comparison with two other leading indices i.e. Caliński-Harabasz index and the Gap index. The efficiency of the new index proposed is higher than that of the competition when the cluster structure is not very distinct.
Źródło:
Przegląd Statystyczny; 2014, 61, 2; 169-180
0033-2372
Pojawia się w:
Przegląd Statystyczny
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies