Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "area level" wg kryterium: Temat


Wyświetlanie 1-5 z 5
Tytuł:
A Comparison of Small Area and Calibration Estimators via Simulation
Autorzy:
Hidiroglou, Michael A.
Estevao, Victor M.
Powiązania:
https://bibliotekanauki.pl/articles/465930.pdf
Data publikacji:
2016
Wydawca:
Główny Urząd Statystyczny
Tematy:
area level
unit level
calibration estimates
small area estimates
simulation
Opis:
Domain estimates are typically obtained using calibration estimators that are direct or modified direct. They are direct if they strictly use data within the domain of interest. They are modified direct if they use both data within and outside the domain of interest. An alternative way of producing these estimates is through small area procedures. In this article, we compare the performance of these two approaches via a simulation. The population is generated using a hierarchical model that includes both area effects and unit level random errors. The population is made up of mutually exclusive domains of different sizes, ranging from a small number of units to a large number of units. We select many independent simple random samples of fixed size from the population and compute various estimates for each sample using the available auxiliary information. The estimates computed for the simulation included the Horvitz-Thompson estimator, the synthetic estimator (indirect estimate), calibration estimators, and unit level based estimators (small area estimate). The performance of these estimators is summarized based on their design- based properties
Źródło:
Statistics in Transition new series; 2016, 17, 1; 133-154
1234-7655
Pojawia się w:
Statistics in Transition new series
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Covariate Selection for Small Area Estimation in Repeated Sample Surveys
Autorzy:
van den Brakel, Jan A.
Buelens, Bart
Powiązania:
https://bibliotekanauki.pl/articles/465973.pdf
Data publikacji:
2015
Wydawca:
Główny Urząd Statystyczny
Tematy:
area level models
cAIC
Hierachical Bayesian predictors
Opis:
If the implementation of small area estimation methods to multiple editions of a repeated sample survey is considered, then the question arises which covariates to use in the models. Applying standard model selection procedures independently to the different editions of the survey may identify different sets of covariates for each edition. If the small area predictions are sensitive to the different models, this is undesirable in official statistics since monitoring change over time of statistical quantities is of utmost importance. Therefore, potential confounding of true change and methodological alterations should be avoided. An approach to model selection is proposed resulting in a single set of covariates for multiple survey editions. This is achieved through conducting covariate selection simultaneously for all editions, minimizing the average of the edition-specific conditional Akaike Information Criteria. Consecutive editions of the Dutch crime victimization survey are used as a case study. Municipal estimates of three survey variables are obtained using area level models. The proposed averaging strategy is compared to the standard method of considering each edition separately, and to an elementary approach using covariates selected in the first edition. Resulting models, point estimates and MSE estimates are analyzed, indicating no substantial adverse effects of the conceptually attractive averaging strategy.
Źródło:
Statistics in Transition new series; 2015, 16, 4; 523-540
1234-7655
Pojawia się w:
Statistics in Transition new series
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Borrowing Information over time in Binomial/Logit Normal Models for Small Area Estimation
Autorzy:
Franco, Carolina
Bell, William R.
Powiązania:
https://bibliotekanauki.pl/articles/465889.pdf
Data publikacji:
2015
Wydawca:
Główny Urząd Statystyczny
Tematy:
area level model
complex surveys
American Community Survey
bivariate
model
SAIPE
Opis:
Linear area level models for small area estimation, such as the Fay-Herriot model, face challenges when applied to discrete survey data. Such data commonly arise as direct survey estimates of the number of persons possessing some characteristic, such as the number of persons in poverty. For such applications, we examine a binomial/logit normal (BLN) model that assumes a binomial distribution for rescaled survey estimates and a normal distribution with a linear regression mean function for logits of the true proportions. Effective sample sizes are defined so variances given the true proportions equal corresponding sampling variances of the direct survey estimates. We extend the BLN model to bivariate and time series (first order autoregressive) versions to permit borrowing information from past survey estimates, then apply these models to data used by the U.S. Census Bureau’s Small Area Income and Poverty Estimates (SAIPE) program to predict county poverty for school-age children. We compare prediction results from the alternative models to see how much the bivariate and time series models reduce prediction error variances from those of the univariate BLN model. Standard conditional variance calculations for corresponding linear Gaussian models that suggest how much variance reduction will be achieved from borrowing information over time with linear models agree generally with the BLN empirical results.
Źródło:
Statistics in Transition new series; 2015, 16, 4; 563-584
1234-7655
Pojawia się w:
Statistics in Transition new series
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Inferential Issues in Model-Based Small Area Estimation: Some New Developments
Autorzy:
Rao, J. N. K.
Powiązania:
https://bibliotekanauki.pl/articles/465725.pdf
Data publikacji:
2015
Wydawca:
Główny Urząd Statystyczny
Tematy:
area level models
complex parameters
informative sampling
model misspecification
robust estimation
unit level models
Opis:
Small area estimation (SAE) has seen a rapid growth over the past 10 years or so. Earlier work is covered in the author's book (Rao 2003). The main purpose of this paper is to highlight some new developments in model-based SAE since the publication of the author's book. A large part of the new theory addressed practical issues associated with the model-based approach, and we present some of those methods for area level and unit level models. We also briefly mention some new work on synthetic estimation of area means or totals based on implicit models.
Źródło:
Statistics in Transition new series; 2015, 16, 4; 491-510
1234-7655
Pojawia się w:
Statistics in Transition new series
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A Comparison of Small Area Estimation Methods for Poverty Mapping
Autorzy:
Guadarrama, María
Molina, Isabel
Rao, J. N. K.
Powiązania:
https://bibliotekanauki.pl/articles/465671.pdf
Data publikacji:
2016
Wydawca:
Główny Urząd Statystyczny
Tematy:
area level model
non-linear parameters
empirical best estimator
hierarchical Bayes
poverty mapping
unit level models
Opis:
We review main small area estimation methods for the estimation of general nonlinear parameters focusing on FGT family of poverty indicators introduced by Foster, Greer and Thorbecke (1984). In particular, we consider direct estimation, the Fay-Herriot area level model (Fay and Herriot, 1979), the method of Elbers, Lanjouw and Lanjouw (2003) used by the World Bank, the empirical Best/Bayes (EB) method of Molina and Rao (2010) and its extension, the Census EB, and finally the hierarchical Bayes proposal of Molina, Nandram and Rao (2014). We put ourselves in the point of view of a practitioner and discuss, as objectively as possible, the benefits and drawbacks of each method, illustrating some of them through simulation studies.
Źródło:
Statistics in Transition new series; 2016, 17, 1; 41-66
1234-7655
Pojawia się w:
Statistics in Transition new series
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-5 z 5

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies