Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "hierarchical Bayes model" wg kryterium: Wszystkie pola


Wyświetlanie 1-5 z 5
Tytuł:
Estimation of Parameters for Small Areas Using Hierarchical Bayes Method in the Case of Known Model Hyperparameters
Autorzy:
Kubacki, Jan
Powiązania:
https://bibliotekanauki.pl/articles/465703.pdf
Data publikacji:
2012
Wydawca:
Główny Urząd Statystyczny
Tematy:
Small area estimation
hierarchical Bayes estimation WinBUGS
Opis:
In the paper the method of parameters estimation using hierarchical Bayes (HB) method in the case of known model hyperparameters for a priori conditionals was presented. This approach has some advantage in comparison with subjective model parameters selection because of more simulation stability and allows obtaining estimates that has more regular distribution. As an example the data about average per capita income from Polish Household Budget Survey for counties (NUTS4) and auxiliary variables from Polish Tax Register (POLTAX) were used. The computation was done using WinBUGS software and R-project environment with R2WinBUGS package, which control the simulations in WinBUGS, and coda package, which allows performing the analysis of simulation results. In the paper sample code in R-project that can be used as a pattern for further similar applications was also presented. The efficiency of hierarchical Bayes estimation with other small area methods was compared. Such comparison was done for HB and EBLUP techniques, for which some consistency related to the precision of estimates obtained using both techniques was achieved.
Źródło:
Statistics in Transition new series; 2012, 13, 2; 261-278
1234-7655
Pojawia się w:
Statistics in Transition new series
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Small Area Estimation of Income Under Spatial SAR Model
Autorzy:
Kubacki, Jan
Jędrzejczak, Alina
Powiązania:
https://bibliotekanauki.pl/articles/465667.pdf
Data publikacji:
2016
Wydawca:
Główny Urząd Statystyczny
Tematy:
small area estimation (SAE)
SAR model
hierarchical Bayes estimation
spatial empirical best linear unbiased predictor
Opis:
The paper presents the method of hierarchical Bayes (HB) estimation under small area models with spatially correlated random effects and a spatial structure implied by the Simultaneous Autoregressive (SAR) process. The idea was to improve the spatial EBLUP by incorporating the HB approach into the estimation algorithm. The computation procedure applied in the paper uses the concept of sampling from a posterior distribution under generalized linear mixed models implemented in WinBUGS software and adapts the idea of parameter estimation for small areas by means of the HB method in the case of known model hyperparameters. The illustration of the approach mentioned above was based on a real-world example concerning household income data. The precision of the direct estimators was determined using own three-stage procedure which employs Balanced Repeated Replication, bootstrap and Generalized Variance Function. Additional simulations were conducted to show the influence of the spatial autoregression coefficient on the estimation error reduction. The computations performed by ‘sae’ package for R project and a special procedure for WinBUGS reveal that the method provides reliable estimates of small area means. For high spatial correlation between domains, noticeable MSE reduction was observed, which seems more evident for HB-SAR method as compared with the traditional spatial EBLUP. In our opinion, the Gibbs sampler, revealing the simultaneous nature of processes, especially for random effects, can be a good starting point for the simulations based on stochastic SAR processes.
Źródło:
Statistics in Transition new series; 2016, 17, 3; 365-390
1234-7655
Pojawia się w:
Statistics in Transition new series
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An empirical study of hierarchical Bayes small area estimators using different priors for model variances
Autorzy:
You, Yong
Powiązania:
https://bibliotekanauki.pl/articles/19938261.pdf
Data publikacji:
2023-09-08
Wydawca:
Główny Urząd Statystyczny
Tematy:
CPO
flat prior
inverse gamma prior
relative error
variance component
Opis:
In this paper, we study hierarchical Bayes (HB) estimators based on different priors for small area estimation. In particular, we use inverse gamma and flat priors for variance components in the HB small area models of You and Chapman (2006) and You (2021). We evaluate the HB estimators through a simulation study and real data analysis. Our results indicate that using the inverse gamma prior for the variance components in the HB models can be very effective.
Źródło:
Statistics in Transition new series; 2023, 24, 4; 169-178
1234-7655
Pojawia się w:
Statistics in Transition new series
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A Two-Component Normal Mixture Alternative to the Fay-Herriot Model
Autorzy:
Chakraborty, Adrijo
Datta, Gauri Sankar
Mandal, Abhyuday
Powiązania:
https://bibliotekanauki.pl/articles/465632.pdf
Data publikacji:
2016
Wydawca:
Główny Urząd Statystyczny
Tematy:
Hierarchical Bayes
heavy-tail distribution
non-informative priors
robustness to outliers
small area estimation
Opis:
This article considers a robust hierarchical Bayesian approach to deal with random effects of small area means when some of these effects assume extreme values, resulting in outliers. In the presence of outliers, the standard Fay-Herriot model, used for modeling area-level data, under normality assumptions of random effects may overestimate the random effects variance, thus providing less than ideal shrinkage towards the synthetic regression predictions and inhibiting the borrowing of information. Even a small number of substantive outliers of random effects results in a large estimate of the random effects variance in the Fay-Herriot model, thereby achieving little shrinkage to the synthetic part of the model or little reduction in the posterior variance associated with the regular Bayes estimator for any of the small areas. While the scale mixture of normal distributions with a known mixing distribution for the random effects has been found to be effective in the presence of outliers, the solution depends on the mixing distribution. As a possible alternative solution to the problem, a two-component normal mixture model has been proposed, based on non-informative priors on the model variance parameters, regression coefficients and the mixing probability. Data analysis and simulation studies based on real, simulated and synthetic data show an advantage of the proposed method over the standard Bayesian Fay-Herriot solution derived under normality of random effects.
Źródło:
Statistics in Transition new series; 2016, 17, 1; 67-90
1234-7655
Pojawia się w:
Statistics in Transition new series
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A Comparison of Small Area Estimation Methods for Poverty Mapping
Autorzy:
Guadarrama, María
Molina, Isabel
Rao, J. N. K.
Powiązania:
https://bibliotekanauki.pl/articles/465671.pdf
Data publikacji:
2016
Wydawca:
Główny Urząd Statystyczny
Tematy:
area level model
non-linear parameters
empirical best estimator
hierarchical Bayes
poverty mapping
unit level models
Opis:
We review main small area estimation methods for the estimation of general nonlinear parameters focusing on FGT family of poverty indicators introduced by Foster, Greer and Thorbecke (1984). In particular, we consider direct estimation, the Fay-Herriot area level model (Fay and Herriot, 1979), the method of Elbers, Lanjouw and Lanjouw (2003) used by the World Bank, the empirical Best/Bayes (EB) method of Molina and Rao (2010) and its extension, the Census EB, and finally the hierarchical Bayes proposal of Molina, Nandram and Rao (2014). We put ourselves in the point of view of a practitioner and discuss, as objectively as possible, the benefits and drawbacks of each method, illustrating some of them through simulation studies.
Źródło:
Statistics in Transition new series; 2016, 17, 1; 41-66
1234-7655
Pojawia się w:
Statistics in Transition new series
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-5 z 5

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies