Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "ventilation" wg kryterium: Temat


Tytuł:
Sposób doprowadzenia powietrza kompensacyjnego a wzdłużna wentylacja pożarowa stacji metra
The Influence of Air Supply Methods on Longitudinal Fire Ventilation of Underground Stations
Autorzy:
Krajewski, G.
Węgrzyński, W.
Powiązania:
https://bibliotekanauki.pl/articles/372886.pdf
Data publikacji:
2016
Wydawca:
Centrum Naukowo-Badawcze Ochrony Przeciwpożarowej im. Józefa Tuliszkowskiego
Tematy:
wentylacja pożarowa
wentylacja tuneli
wentylacja wzdłużna
metro
kompensacja
fire ventilation
tunnel ventilation
longitudinal ventilation
underground railway
air supply
Opis:
Cel: Przedstawienie wyników badań własnych autorów w obszarze systemów wentylacji podziemnych obiektów kolejowych na przykładzie sieci metra. Badania obejmowały przede wszystkim powiązanie wpływu sposobu doprowadzenia powietrza kompensacyjnego do obszaru stacji metra ze skutecznością działania systemu wzdłużnej wentylacji tej stacji. Artykuł ma na celu zapoznanie projektantów z możliwym zastosowaniem wentylacji wzdłużnej, także w obszarze stacji podziemnych, poprzez podkreślenie wad i zalet tego rozwiązania. Artykuł zredagowano na podstawie wyników badań prezentowanych na konferencji „Budownictwo podziemne i bezpieczeństwo w komunikacji drogowej i infrastrukturze miejskiej” (Kraków 2016). Wprowadzenie: Jednym z dopuszczonych do stosowania rozwiązań wentylacji pożarowej podziemnych stacji kolei (metra) jest system wentylacji wzdłużnej, bazujący na rozwiązaniach podobnych do tych wykorzystywanych w wentylacji tuneli. Systemy wentylacji wzdłużnej mogą zapewnić podobne warunki środowiska do systemów poprzecznych (oddymiania). Chronią one cały obszar stacji i zapewniają drogę wejścia dla ekip ratowniczo-gaśniczych. Aby spełniały te funkcje, należy poprawnie dobrać metodę doprowadzenia powietrza kompensacyjnego do obszaru stacji, zarówno w sposób mechaniczny, jak i naturalny. Duże znaczenie ma również stosunek ilości powietrza doprowadzanego w sposób mechaniczny oraz grawitacyjny. W artykule autorzy prezentują wyniki przeprowadzonego krótkiego programu badań numerycznych, w ramach którego analizowano wpływ bilansu powietrza doprowadzanego na efekty działania systemu wentylacji pożarowej peronów. Metodologia: W pracy przedstawiono w głównej mierze wyniki badań własnych autorów, wykonanych z wykorzystaniem metody obliczeniowej mechaniki płynów (CFD), które osadzono w kontekście literaturowym tematu. Dodatkowo zaprezentowano własne doświadczenia zdobyte w trakcie kilkuset testów z gorącym dymem w trakcie odbiorów II linii Metra Warszawskiego. Wnioski: Systemy wentylacji pożarowej wzdłużnej są w stanie zapewnić porównywalne warunki środowiska w obrębie tuneli i stacji metra do systemów poprzecznych. Działanie systemu wzdłużnego można uznać za bezpieczniejsze z punktu widzenia ratowników prowadzących działania ratowniczo-gaśnicze. Kluczową rolę w określeniu skuteczności systemu mają sposób dostarczania powietrza oraz ilość powietrza, które dostarczane jest mechanicznie.
Aim: The purpose of this paper is to reveal the outcome from studies performed by the authors about smoke and heat ventilation systems for underground railway buildings using an underground railway network as an example. Research activity examined, in particular, the link between air supply methods to an underground station area with the effective performance of a longitudinal ventilation system at such a station. The intention for this publication is to increase the design credibility for longitudinal ventilation solutions, including solutions for underground stations, by highlighting associated advantages and disadvantages. This article is based on experimental study results, which were presented at an international conference “Underground Buildings and Road Safety, and the Urban Infrastructure” (Budownictwo podziemne i bezpieczeństwo w komunikacji drogowej i infrastrukturze miejskiej), Kraków 2016. Introduction: Longitudinal ventilation systems provide one of the approved solutions for underground railway stations and are based on similar solutions applied in the ventilation of road tunnels. Such system may provide similar environmental conditions as with transverse systems, at the same time preserve areas throughout the station from smoke and ensure safe access for firefighting and rescue teams. In order to achieve this, a key issue, which must be addressed, concerns the choice of supply strategy for the delivery of air to the underground location. This may be by mechanical as well as natural means. Likewise, the volume relationship between air supplied by mechanical and gravitational means has a crucial impact on the performance of the ventilation system. The authors reveal results from a short programme of numerical studies, which analysed the air flow relationship to achieve an optimum balance, and the consequential performance of fire ventilation systems on station platforms. Methodology: The study reveals results from original research performed by the authors, which is based on the literature review in this area, using the Computational Fluid Dynamics method (CFD), Additionally, numerical study results are supported by the authors personal experience acquired through numerous hot smoke tests performed during the commissioning phase of the Warsaw Metro, Line 2. Conclusions: Longitudinal systems can provide similar environmental conditions as traditional transverse systems. During firefighting and rescue operations, longitudinal systems provide more safety for firefighters than transverse solutions. The key role in the system performance can be attributed to the supply method and volume of air provided by mechanical means.
Źródło:
Bezpieczeństwo i Technika Pożarnicza; 2016, 43, 3; 231-241
1895-8443
Pojawia się w:
Bezpieczeństwo i Technika Pożarnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Bariera powietrzna jako podział przestrzeni o charakterze liniowym w warunkach pożaru
Air Barrier as a Compartmentation of Longontidual Space in Fire Conditions
Autorzy:
Krajewski, G.
Węgrzyński, W.
Powiązania:
https://bibliotekanauki.pl/articles/373894.pdf
Data publikacji:
2016
Wydawca:
Centrum Naukowo-Badawcze Ochrony Przeciwpożarowej im. Józefa Tuliszkowskiego
Tematy:
wentylacja pożarowa
bariery powietrzne
wentylacja korytarzy
fire ventilation
air barrier
corridor ventilation
Opis:
Cel: Przedstawienie wyników badań własnych autorów w obszarze zastosowania barier powietrznych do wydzielenia obszarów niezadymionych w czasie pożaru w przestrzeniach o charakterze liniowym. Wyniki zaprezentowane w pracy są rezultatem badań przeprowadzonych w Zakładzie Badań Ogniowych ITB. Wprowadzenie: Bariery powietrzne są stosowane jako „wirtualne przegrody” pozwalające na zredukowanie wymiany ciepła i masy pomiędzy dwoma przyległymi do siebie strefami o różnych parametrach środowiska. Bariera powietrzna wytwarza odpowiednio duże ciśnienie dynamiczne na wylocie, uniemożliwiając tym samym poprzeczny przepływ poprzez otwór, w którym jest zlokalizowana. Kurtyny powietrzne mogą być wykorzystane do ograniczenia rozprzestrzeniania dymu w przypadku pożaru poprzez wydzielenie stref niezadymionych. Prawidłowe zastosowanie bariery powietrznej jako elementu systemu wentylacji pożarowej pozwala na podzielenie przestrzeni liniowych, jakimi są np. korytarze, na odcinki, w których dym będzie utrzymywany w obszarze od kurtyny do wyciągu powietrza. Jednym z kluczowych aspektów w tym obszarze jest zapewnienie jak najwyższej szczelności takiej kurtyny. Metodologia: W pracy przedstawiono wyniki badań laboratoryjnych przeprowadzonych w skali rzeczywistej, które są podstawą do weryfikacji przyjętego modelu numerycznego. Badania dotyczyły pomiaru rozkładu prędkości w osi płaskiej strugi ograniczonej dla różnych szerokości szczeliny nawiewnej. Po przeprowadzonej weryfikacji wykonano szereg analiz numerycznych funkcjonowania bariery powietrznej dla różnych zmiennych, do których należały: wysokość korytarza, szerokość szczeliny nawiewnej, prędkość w przekroju korytarza przy uwzględnieniu oddziaływania gazów powstałych w wyniku pożaru. Wnioski: W przypadku przestrzeni o charakterze liniowym, takich jak korytarze czy tunele, dym i ciepło powstałe w czasie pożaru rozprzestrzeniają się znacznie szybciej niż w przestrzeniach o dużej kubaturze i rozległej geometrii. Z uwagi na ewakuację ludzi i podjęcie działań ratowniczo-gaśniczych istotne jest ograniczenie obszaru, w którym dym może się rozprzestrzenić. Bariery powietrzne o prawidłowo dobranych parametrach są w stanie skutecznie powstrzymać rozprzestrzenianie się dymu i ciepła dzięki wytworzeniu „przegrody”, która jednocześnie umożliwia swobodny przepływ ludzi i urządzeń. W zależności od wymagań stawianych przez projektanta kurtyna może być „przegrodą” dla dymu i ciepła bądź tylko dla dymu (co wiąże się z niższymi prędkościami na wylocie ze szczeliny nawiewnej). Rozwiązanie to może być stosowane zarówno w tunelach, łącznikach między stacjami, korytarzach, jak i wszelkich przestrzeniach, gdzie zastosowanie stałej przegrody w postaci drzwi nie jest możliwe.
Objective: The aim of the paper is to present the results of research carried out by the authors in the field of using air barriers to separate smoke-free areas during a fire in linear spaces. The results presented in the paper are a culmination of research conducted at the Fire Research Department of the Building Research Institute. Introduction: Air barriers are used as virtual partitions for reducing heat and mass transfer between two zones adjacent to each other of different environmental parameters. It produces sufficiently high dynamic pressure at the exit, thereby preventing lateral movement through the aperture in which it is located. Air curtains can be used to limit the spread of smoke in case of a fire by separating smoke-free zones. Proper use of air barrier as part of a fire ventilation system allows to divide linear spaces such as corridors into sections, where the smoke will be maintained in the area from the curtain to the air extraction shaft. One of key aspects is to ensure the highest tightness of the curtain. Methodology: The study presents the results of laboratory tests in real scale, which is the basis for verification of the adopted numerical model. The research referred to the measurement of velocity distribution in the axis of a flat jet limited for different widths of the inlet slot. After verification, a series of numerical analyzes was carried out to estimate the functioning of the air barrier for different variables, which included: the height of the corridor, the width of the slot diffuser, the speed in the cross-section of the corridor taking into account the interaction of gases produced by the fire. Conclusions: In the linear spaces which are corridors and tunnels, smoke and heat caused by the fire spread much faster than in areas of large volume and extensive geometry. Due to the evacuation of people and rescue and firefighting operations, it is essential to limit the area where the smoke and heat can spread. Air barriers with properly selected parameters can effectively stop the spread of smoke and heat by creating a “partition”, which also allows free movement of people and equipment. Depending on the requirements set by the designer, an air barrier can be used as a partition for smoke and heat, or only for smoke which is associated with lower velocities at the outlet of the inlet slot. This solution can be used in tunnels, connections between stations, corridors and all areas where the use of a fixed partition in the form of solid doors is impossible.
Źródło:
Bezpieczeństwo i Technika Pożarnicza; 2016, 43, 3; 243-251
1895-8443
Pojawia się w:
Bezpieczeństwo i Technika Pożarnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Ocena bezpieczeństwa użytkowników tunelu drogowego z wentylacją wzdłużną w warunkach pożaru przy wykorzystaniu narzędzi modelowania numerycznego
Safety Assessment of Road Tunnels with Longitudinal Ventilation, During a Fire Incident, Utilizing Numerical modelling Tools
Autorzy:
Nawrat, S.
Schmidt-Polończyk, N.
Napieraj, S.
Powiązania:
https://bibliotekanauki.pl/articles/372776.pdf
Data publikacji:
2016
Wydawca:
Centrum Naukowo-Badawcze Ochrony Przeciwpożarowej im. Józefa Tuliszkowskiego
Tematy:
bezpieczeństwo pożarowe
tunel drogowy
wentylacja pożarowa
wentylacja wzdłużna
ewakuacja
fire safety
road tunnel
fire ventilation
longitudinal ventilation
evacuation
Opis:
Cel: Przedstawienie procesu oceny bezpieczeństwa użytkowników podczas pożaru w tunelu drogowym, wentylowanym wzdłużnym systemem wentylacji, z wykorzystaniem narzędzi modelowania numerycznego. Wprowadzenie: W przypadku pożaru w tunelu drogowym najważniejsze są działania samoratownicze podejmowane przez użytkowników korzystających z tego obiektu. Ich skuteczność zależy od szeregu parametrów, w tym od geometrii tunelu, systemów bezpieczeństwa (np. wentylacji), rodzaju spalanego materiału, strumienia wyzwalanego ciepła HRR (ang. heat release rate) podczas pożaru, czy rozmieszczenia wyjść ewakuacyjnych. Narzędzia modelowania numerycznego są coraz częściej wykorzystywane m.in. do oceny skuteczności systemów bezpieczeństwa oraz bezpieczeństwa użytkowników w trakcie ewakuacji, co z kolei sprawdzane jest zazwyczaj na etapie projektowym danego obiektu. Osoba przeprowadzająca badania numeryczne musi posiadać wiedzę z zakresu wielu dziedzin, znać: podstawy modelowania matematycznego, wykorzystywane narzędzia oraz ich ograniczenia, zagadnienia związane z metodą obliczeniowej mechaniki płynów (CFD), specyfikę pożaru oraz potrafić poprawnie dobierać parametry początkowo-brzegowe. Metodologia: W artykule przedstawiono wyniki studium literatury specjalistycznej, w tym wybrane krajowe i międzynarodowe wytyczne projektowe, stanowiące wypadkową dyskusji naukowo-technicznych, badań numerycznych, laboratoryjnych oraz testów w skali rzeczywistej. Ponadto w pracy zaprezentowano wyniki badań własnych autorów artykułu realizowanych w ramach bieżącej działalności Wydziału Górnictwa i Geoinżynierii Akademii Górniczo-Hutniczej. Wnioski: Komputerowe metody numeryczne wykorzystano do kompleksowej oceny bezpieczeństwa użytkowników tunelu drogowego z wentylacją wzdłużną w warunkach pożaru. Oceny tej dokonano przy zastosowaniu kryterium bezpiecznej ewakuacji, której wyznaczenie wymaga określenia czasu pojawienia się w tunelu krytycznych warunków środowiskowych zagrażających zdrowiu lub życiu osób podejmujących działania samoratownicze oraz czasu wyewakuowania się wszystkich użytkowników tunelu w bezpieczne miejsce. W pracy przedstawiono przebieg oceny, istotne założenia i parametry początkowo-brzegowe ze wskazaniem na źródła literatury fachowej oraz wyniki analiz własnych, na podstawie których należy stwierdzić, że w tunelach jednokierunkowych, o długości 1500 m z systemem wentylacji wzdłużnej nie zostanie zapewniony wymagany poziom bezpieczeństwa w warunkach pożaru o mocy 30 MW, w przypadku braku wyjść ewakuacyjnych oraz rozmieszczenia ich co 500 m.
Aim: To identify an evaluation process concerning the safety of road tunnel users during a fire incident. The study focussed on tunnels with longitudinal ventilation systems and examined safety from an evacuation perspective, utilizing numerical modelling tools. Introduction: During a fire outbreak in road tunnels, the behaviour of users is critical, specifically during their individual attempts at rescue and evacuation. The outcome from such endeavours is dependent on a range of factors, including: tunnel geometry, safety systems in existence, ventilation, makeup of combustible material, heat release rate during burning and location of emergency exits. The use of numerical modelling tools is becoming an accepted norm, which, among others, is used to evaluate the effectiveness of safety systems as well as the safety of users during an evacuation. The latter is usually tested at the facility project design stage. Conduct of such activities require an individual to have detailed knowledge of a range of disciplines, thorough knowledge of mathematical modelling and application tools, awareness of software limitations, issues associated with computational fluid dynamics, specific knowledge concerning the behaviour of fires and appropriate selection of boundary conditions. Methodology: This article reveals outcomes from a literary review of specialist material, including selected national and international project design guidelines derived from science and technology discussions, and numeric research performed in laboratory as well as real life conditions. Additionally, the paper presents original research results produced by the authors in the course of their ongoing activities at the Faculty of Mining and Geoengineering, at the AGH University of Science and Technology. Conclusions: Computer numerical methods were harnessed to perform an assessment of safety in a fire environment, for users of road tunnels with longitudinal ventilated systems. This assessment was performed by applying a safe evacuation criterion, which requires identification of the start time when the critical environmental conditions occur in the tunnel, that is conditions presenting a hazard to the life and health of people who undertake self rescue activities, and duration of users evacuation to a safe location. The study identified essential assumptions, boundary parameters, specialist bibliography and analysis results from the work performed by the authors. Outcome from research indicates that in one-way road tunnels, of 1500 metres in length, without emergency exits or with exits spaced 500 metres apart, and ventilated by longitudinal systems, the required safety level will not be achieved during a fire incident with a heat release rate of 30 MW.
Źródło:
Bezpieczeństwo i Technika Pożarnicza; 2016, 43, 3; 253-264
1895-8443
Pojawia się w:
Bezpieczeństwo i Technika Pożarnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Ocena wpływu aranżacji garażu na wynik symulacji CFD rozprzestrzeniania się dymu i ciepła
The Influence of the Arrangement of Passenger Cars in Indoor Car Parks on CFD Calculations
Autorzy:
Suchy, P. T.
Węgrzyński, W.
Powiązania:
https://bibliotekanauki.pl/articles/373341.pdf
Data publikacji:
2018
Wydawca:
Centrum Naukowo-Badawcze Ochrony Przeciwpożarowej im. Józefa Tuliszkowskiego
Tematy:
wentylacja pożarowa
garaże zamknięte
wentylacja strumieniowa
symulacje CFD
CFD simulations
fire ventilation
indoor car park
thrust ventilation
Opis:
Cel: Celem pracy jest przedstawienie wyników badań dotyczących określenia wpływu rozmieszczenia w przestrzeni garażu pojazdów osobowych w określonych miejscach parkingowych na uzyskane w symulacjach numerycznych CFD wartości parametrów fizycznych, w tym masowej koncentracji dymu oraz pola prędkości przepływu. Aby dokonać rozmieszczenia samochodów w sposób losowy, stworzono program komputerowy wykorzystujący metodę pseudolosowego doboru parametrów i lokalizacji pojazdów. Projekt i metody: Obliczenia numeryczne wykonane w ANSYS FLUENT v.14.5. Wyniki: Analiza wyników pozwala stwierdzić, że wielkości wirów dymu i gazów pożarowych oraz prędkości, jakie osiągają po uformowaniu się w obrębie garażu mają istotny wpływ na masową koncentrację dymu w analizowanym obszarze. W obliczeniach zaobserwowano również, że w przypadku scenariuszy uwzględniających taką samą liczbę pojazdów, istotny wpływ na sposób oceny ma fakt, w jakim miejscu zostaje ukształtowana główna struga powietrza dopływająca z szachtu nawiewnego.Wnioski: W przypadku garaży o skomplikowanym kształcie lub niskich (poniżej 2,9 m) rekomenduje się wykonanie dodatkowych obliczeń numerycznych uwzględniających różną liczbę i rozmieszczenie pojazdów w garażu. Wykonanie dodatkowych symulacji można ograniczyć do przypadków, w których zajętość miejsc parkingowych w garażu będzie wynosiła 0% (jedynie z samochodem, z którego inicjowany jest pożar), 40–50% i 100%. Podane obłożenie stanowisk wynika z przeanalizowanych serii obliczeń, gdy różnice w wynikach były najbardziej zauważalne i istotne w procesie oceny. Różnice w wynikach pomiędzy scenariuszami będą większe, gdy pożar będzie się rozwijał z większą mocą i w rezultacie wydzieli się więcej dymu i ciepła w przestrzeni garażu. Dlatego istotne jest, by w takim przypadku przed przystąpieniem do obliczeń numerycznych, dokonać oceny ryzyka wpływu zajętości miejsc postojowych na końcowe wyniki. Z przedstawionych w niniejszym opracowaniu symulacji wynika, że już przy pożarach rzędu 1,4 MW w początkowej ich fazie rozwoju istotnie mogą zmieniać się warunki panujące w garażu. W sytuacji, gdy prędkości na kratach nawiewu mechanicznego wynoszą ponad 2,5 m/s, a w najbliższej okolicy szachtu kompensacyjnego znajdują się zaparkowane pojazdy, wówczas obliczenia numeryczne należałoby wykonać dla pustego garażu, jak również dla scenariusza z samochodami zaparkowanymi w tych newralgicznych punktach. Uzyskane z takiej serii obliczeń wyniki mogą się znacząco różnić, więc zasadne jest, by w analizach uwzględniać tego rodzaju przypadki.
Aim: The aim of this study is to present the results of research on the influence of the arrangement of passenger cars in specific parking spaces inside an indoor car park on the numerical values obtained in CFD simulations of physical parameters such as smoke density and air/smoke stream velocity. In order to distribute cars randomly, a computer program was developed using a pseudorandom method to determine the type of vehicle as well as the position of the car in the indoor car park. Project and methods: CFD calculations in Ansys Fluent 14.5. Results: On analysis, the results demonstrate that the size of vortices and their velocity after forming inside the indoor car park space have a significant impact on the mass concentration of smoke in the analysed area. In the course of the calculations, it was also observed that in comparing scenarios with the same number of vehicles, the method of assessment is significantly affected by the location of formation of the main air stream arriving from the air supply duct. Conclusions: In the case of indoor car parks with a complicated shape or low height, less than 2.9 m, it is recommended to perform additional numerical calculations taking into account different numbers of vehicles and their locations in the indoor car park. Additional simulations can be limited to cases where the occupancy of parking spaces in the indoor car park will be 0% (except for the car being the ignition source), 40-50% and 100%. The provided occupancy rates are based on the analysed calculation series, where the differences in the results were the most noticeable and significant in the assessment process.Scenario results will vary more if the fire curves initiated at the beginning have higher HRR and as a result more smoke and heat are released within the indoor car park. Therefore, in such cases, it is important to assess the risk of impact of the parking space occupancy rate on the results before proceeding to final numerical calculations. The simulations presented in this study demonstrate that at 1.4MW fires in the initial phase of fire development, the conditions prevailing in the indoor car park can change significantly. In a situation where the velocities on the mechanical ventilation grilles are over 2.5 m/s, and parked vehicles are located in the vicinity of the compensation inlet, it is important to perform numerical calculations for an empty indoor car park as well as for the scenario with cars parked at these crucial points. The results obtained from this series of calculations may vary significantly, so it is reasonable to include such cases in the analyses.
Źródło:
Bezpieczeństwo i Technika Pożarnicza; 2018, 52, 4; 118-139
1895-8443
Pojawia się w:
Bezpieczeństwo i Technika Pożarnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wykorzystanie narzędzi inżynierii bezpieczeństwa pożarowego w projektowaniu i odbiorze systemów wentylacji pożarowej garaży zamkniętych
The use of Fire Safety Engineering in the Design and Commissioning of Car Park Fire Ventilation Systems
Autorzy:
Krajewski, G.
Węgrzyński, W.
Powiązania:
https://bibliotekanauki.pl/articles/373478.pdf
Data publikacji:
2014
Wydawca:
Centrum Naukowo-Badawcze Ochrony Przeciwpożarowej im. Józefa Tuliszkowskiego
Tematy:
wentylacja pożarowa
garaże zamknięte
wentylacja kanałowa
wentylacja strumieniowa
fire ventilation
enclosed car parks
smoke and heat exhaust systems
jet-fan ventilation
Opis:
Cel: Przedstawienie wiedzy związanej z zastosowaniem narzędzi inżynierii bezpieczeństwa pożarowego na etapie projektu i odbioru systemów wentylacji pożarowej, ze szczególnym uwzględnieniem elementów układu równań będącego podstawą metody CFD, modeli fizycznych wykorzystywanych w obliczeniach oraz warunków brzegowych związanych z pożarem. Wprowadzenie: Projektowanie systemów wentylacji pożarowej garaży zamkniętych jest procesem skomplikowanym i wieloetapowym. Z uwagi na brak jednoznacznych krajowych wytycznych i jednoczesne postawienie w przepisach techniczno-budowlanych wymagań funkcjonalnych związanych z oceną skuteczności działania systemu proces ten jest trudny. Weryfikacja i ocena projektu wymaga szczegółowej wiedzy nie tylko z zakresu podstaw prawnych, ale również z zakresu wykorzystania nowoczesnych narzędzi inżynierskich takich jak metoda obliczeniowej mechaniki płynów (CFD) czy metod oceny skuteczności działania instalacji z wykorzystaniem gorącego dymu. Aby osoby mające styczność ze wspomnianymi analizami były w stanie samodzielnie ocenić podstawowe zagadnienia im przedstawiane, niezbędne jest zamknięcie podstawowej wiedzy z analizowanego zakresu w zwięzłe ramy, z jednoczesnym przedstawieniem bazy literaturowej, w której należy szukać odpowiedzi na trudniejsze pytania. Metodologia: W pracy przedstawione zostały wyniki analizy literatury tematu, badań własnych autorów publikacji przeprowadzonych w ramach projektu rozwojowego NR 04 0003 06 „Kontrola dymu i ciepła w garażach” oraz prac realizowanych w ramach tematów statutowych Instytutu Techniki Budowlanej oraz działalności bieżącej Zakładu Badań Ogniowych ITB. Wnioski: Wykorzystanie nowoczesnych narzędzi inżynierii bezpieczeństwa pożarowego, jakimi są analizy z wykorzystaniem metody obliczeniowej mechaniki płynów (CFD) oraz metoda gorącego dymu jest dzisiaj powszechną procedurą towarzyszącą niemalże każdemu projektowi systemu wentylacji pożarowej garażu zamkniętego. Przedstawiane wyniki analiz są często trudne w interpretacji i niejednoznaczne. Osoby prowadzące weryfikację tych projektów, funkcjonariusze PSP odpowiadający za odbiór i inne podmioty biorące udział w procesie projektowania muszą mieć świadomość źródła pochodzenia przyjętych założeń i uproszczeń i być w stanie zweryfikować podstawy ich zastosowania. Dopiero takie, w pełni świadome, wykorzystanie narzędzi, którymi dysponujemy, daje pewność, że wyniki analiz są bliskie rzeczywistości, a wnioski z nich płynące poprawne.
Aim: Presentation of technical know-how associated with the application of Fire Safety Engineering (FSE) tools during the design and commissioning stage of ventilation systems in enclosed car parks. Specific focus is placed on the presentation of differential equations which form the basis of the Computational Fluid Dynamics (CFD) technique, physical models used in computation and boundary conditions associated with fire incidents. Introduction: The design of fire ventilation systems in enclosed car parks is a long, complicated and multi-staged process. The absence of clear national guidelines and simultaneous functional requirements, stipulated in technical construction regulations about effectiveness of the operating system, make the task more difficult. Evaluation of the design requires explicit knowledge, not only about standards and legal requirements, but also about the application of most up to date engineering tools, such as the computation method of fluid dynamics CFD or performance evaluation of installations with the application of heated smoke. Individuals tasked with previously mentioned responsibilities should be suitably equipped to address basic issues. It is essential to encapsulate fundamental knowledge of relevant elements within a succinct framework. Simultaneously, appropriate literature should be identified and made accessible to assist with a search for answers to more difficult questions. Methodology: The article includes an analysis of relevant literature, studies conducted by authors under the auspices of a development grant nr. 04 0003 06 “Smoke and heat control in car parks” as well as statutory tasks performed by the Building Research Institute (BRI) and finally ongoing activities of the Fire Research Department of BRI. Conclusions: The use of modern FSE tools, such as CFD analysis or hot smoke performance evaluation are common procedures in current times. They are performed for almost every design of smoke and heat exhaust system in enclosed car parks. Interpretation of analysis results is often difficult and ambiguous. Individuals responsible for verification of the design, State Fire Service staff responsible for commissioning or others who participate in the project design have to understand the source of assumptions and simplifications which are made and be in a position to verify the basis for their application. Only such cognisant use of FSE tools will give confidence that evaluation results are close to reality and subsequent conclusions are correct.
Źródło:
Bezpieczeństwo i Technika Pożarnicza; 2014, 4; 141-156
1895-8443
Pojawia się w:
Bezpieczeństwo i Technika Pożarnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zapewnienie bezpieczeństwa w systemach odprowadzania spalin w budownictwie mieszkaniowym
Securing the Safety of Flue Systems in Residential Property Construction
Autorzy:
Drożdżol, K.
Powiązania:
https://bibliotekanauki.pl/articles/373031.pdf
Data publikacji:
2016
Wydawca:
Centrum Naukowo-Badawcze Ochrony Przeciwpożarowej im. Józefa Tuliszkowskiego
Tematy:
komin
zaczadzenie
pożar komina
wentylacja
chimney
carbon monoxide poisoning
chimney fire
ventilation
Opis:
Cel: Celem artykułu jest przedstawienie zagrożeń dla zdrowia i życia użytkowników obiektów mieszkaniowych, wynikających z nieprawidłowej eksploatacji i wad konstrukcyjnych systemów kominowych, pracujących grawitacyjnie w podciśnieniu. Przedstawiono i dokonano analizy statystyk wypadków spowodowanych nieszczelnościami kominów oraz zaprezentowano przykłady nieprawidłowości konstrukcji kominów, mogących powodować zagrożenia. Wprowadzenie: Kominy to elementy konstrukcyjne występujące powszechnie w budownictwie mieszkaniowym, które służą do odprowadzania produktów spalania z urządzeń grzewczych (kominy spalinowe i dymowe) i wentylacji pomieszczeń (kominy wentylacyjne). Prawidłowość eksploatacji przewodów kominowych ma bezpośredni wpływ na zdrowie, bezpieczeństwo, a niejednokrotnie życie mieszkańców. W artykule przedstawiono najczęściej występujące zagrożenia związane z eksploatacją przewodów kominowych w budynkach mieszkalnych. Dużo miejsca poświęcono przyczynom powstawania wypadków i możliwościom ich zapobiegania. Dodatkowo podano i omówiono statystyki zdarzeń, będących wynikiem nieprawidłowej eksploatacji kominów i systemów kominowych, w których poszkodowani zostali ludzie. Należy zwrócić uwagę na to, że w życiu codziennym większość eksploatowanych mieszkań w naszych warunkach klimatycznych posiada kominy pracujące grawitacyjnie. Artykułem powinny być zainteresowane wszystkie osoby, które odpowiadają za bezpieczeństwo budynków, a także ich użytkownicy. Metodologia: Analizę występujących nieprawidłowości przy eksploatacji kominów i systemów kominowych wykonano metodą badania indywidualnych przypadków, jakie wystąpiły w budownictwie w latach 2005-2014 na terenie naszego kraju. Dotyczyły one nieprawidłowo zaprojektowanych, wykonanych lub eksploatowanych kominów i systemów kominowych. Wnioski: Systemy kominowe są elementami konstrukcyjnymi budynków, które bezpośrednio wpływają na bezpieczeństwo eksploatacji obiektów. Przykłady przedstawione w pracy ilustrują, jak nieprawidłowe działanie elementów systemów kominowych bezpośrednio zagraża zdrowiu i życiu ich użytkowników. W związku z wymienionymi niebezpieczeństwami kominy powinny być odpowiednio wykonane i należycie utrzymywane. Do prawidłowego i bezpiecznego funkcjonowania przewodów kominowych ‒ oprócz dobrze wykonanej konstrukcji ‒ konieczne jest zapewnienie sprawności urządzeń grzewczych i infiltracja odpowiedniej ilości powietrza z zewnątrz.
Aim: The purpose of the article is to expose threats to health and life for occupants of residential properties, resulting from incorrect use of and constructional defects in, chimney systems, which operate on gravitational principles in negative pressure. An analysis of statistics associated with accidents caused by leaking chimneys was performed and examples of chimney construction defects were identified, which may be a source of danger. Introduction: Chimneys are commonly encountered elements of construction found in residential properties. Their purpose is to facilitate the release of combustion products from heating appliances (smoke and gas flues) and to ventilate rooms (ventilation chimneys). The proper functioning of flues and chimneys has a direct impact on health, safety and often life of residents. The article identifies most frequently encountered threats during exploitation of both in residential buildings. The paper, in the main, concentrates on the causes of accidents and identifies preventative measures. Moreover, the paper presents and discusses incident statistics dealing with injuries to humans, which are the consequence of inappropriate exploitation of chimneys and flue systems. It is appropriate to mention that in prevailing climatic conditions, the majority of present day accommodation is equipped with flue systems operating on gravitational principles. The article should be of interest to all who have responsibility for the safety of buildings and their users. Methodology: An analysis of defects found during chimney and flue systems exploitation was performed by an examination of incidents, which occurred in buildings during years 2005 – 2014, in Poland. It deals with issues of incorrect design, construction or use of chimneys and flue systems. Conclusions: Flue systems are construction elements, which have a direct bearing on the safe utilisation of buildings. Examples presented in this paper illustrate how incorrect operation of flue systems dangerously impacts on the health and life of users. With regard to aforementioned threats, chimneys should be correctly constructed and properly maintained. To ensure the proper and safe functioning of flues and chimneys, apart from correct installation, it is important to ensure efficient functioning of heating appliances and adequate inflow of outdoor air.
Źródło:
Bezpieczeństwo i Technika Pożarnicza; 2016, 41, 1; 67-73
1895-8443
Pojawia się w:
Bezpieczeństwo i Technika Pożarnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Możliwości stosowania technologii oczyszczania powietrza z zanieczyszczeń gazowych w tunelach drogowych
Possibility of Using Air Purification Technology From Gas Pollution in Road Tunnels
Autorzy:
Nawrat, S.
Schmidt-Polończyk, N.
Napieraj, S.
Powiązania:
https://bibliotekanauki.pl/articles/373554.pdf
Data publikacji:
2016
Wydawca:
Centrum Naukowo-Badawcze Ochrony Przeciwpożarowej im. Józefa Tuliszkowskiego
Tematy:
tunel
wentylacja tuneli
oczyszczanie powietrza
zanieczyszczenia
tunnel
tunnel ventilation
air purification
pollutants
Opis:
Cel: Budowa tuneli drogowych szczególnie na terenach zurbanizowanych pozwala zmniejszyć emisję zanieczyszczeń gazowych w miejscu wybudowanego tunelu, ale jednocześnie powoduje znaczne zwiększenie stężeń tych zanieczyszczeń w rejonie wylotu zużytego powietrza z tunelu. W artykule przedstawiono symulację rozprzestrzeniania się ditlenku azotu pochodzącego ze spalin samochodowych w rejonie analizowanej ulicy oraz symulację zmiany jego stężeń w przypadku budowy tunelu z wentylacją wzdłużną bez systemu oczyszczania powietrza oraz z zabudowanym systemem oczyszczania powietrza. Przeprowadzono analizę skuteczności stosowania technologii oczyszczania powietrza wentylacyjnego z tuneli. Wprowadzenie: Według raportów dotyczących jakości powietrza Polska należy do najbardziej zanieczyszczonych państw w Europie. Głównym powodem wysokiego stężenia zanieczyszczeń w powietrzu w miastach są emitowane spaliny samochodowe. Jedną z metod ograniczenia zawartości zanieczyszczeń stałych i gazowych w powietrzu w miastach jest budowa drogowych tuneli komunikacyjnych. Rozwiązanie to powoduje znaczne zmniejszenie emisji zanieczyszczeń, szczególnie gazowych w obszarze tunelu. Niemniej jednak odprowadzane powietrze wentylacyjne z tunelu generuje lokalnie w rejonach wylotów z tuneli podwyższony poziom stężenia zanieczyszczeń. Na świecie stosowane są systemy oczyszczania dużych strumieni powietrza wentylacyjnego tuneli z zanieczyszczeń stałych i gazowych – przykładami są tunele Mont Blanc w Alpach łączący Chamonix we Francji z Courmayeur we Włoszech oraz tunel M30 w Madrycie. W takich tunelach powietrze wentylacyjne jest oczyszczane przed jego usunięciem do atmosfery. Metodologia: W celu zbadania wpływu tunelu drogowego na poziom stężenia wybranych zanieczyszczeń w powietrzu wybrano koncepcyjną lokalizację budowy tunelu drogowego w Warszawie w ciągu ulicy Wawelskiej. Emisja wybranych zanieczyszczeń gazowych pochodzących ze spalin silników samochodowych do atmosfery została zamodelowana nowoczesnym oprogramowaniem Computational Fluid Dynamics. W tym zakresie przeprowadzono analizę trzech przypadków: stanu istniejącego w rejonie ulicy Wawelskiej (ruch pojazdów ciągiem drogowym), budowy tunelu z wentylacją wzdłużną bez oczyszczania powietrza wentylacyjnego z tunelu oraz budowy tunelu z wentylacją wzdłużną z systemem oczyszczania powietrza z tunelu. Następnie wyniki badań stężeń zanieczyszczeń w powietrzu dla analizowanych przypadków zostały porównane. Wnioski: Rezultaty analiz numerycznych zestawione z przeprowadzonymi przez pracowników Politechniki Warszawskiej wynikami badań stężeń zanieczyszczeń powietrza w rejonie ulicy Wawelskiej w Warszawie potwierdziły przyjęte założenia dotyczące modelowania numerycznego stanu obecnego. Efekty analiz dotyczących prognozowanego stężenia zanieczyszczeń w powietrzu dla wariantu budowy tunelu bez systemu oczyszczania powietrza wykazały znaczne zmniejszenie zanieczyszczeń w rejonie ulicy Wawelskiej oraz spore przekroczenia dopuszczalnych stężeń zanieczyszczeń przy wylotach z portali tuneli. Ponadto wyniki badań numerycznych potwierdziły, że budowa tunelu wraz z systemem oczyszczania powietrza wentylacyjnego jest najkorzystniejszym rozwiązaniem prowadzącym do zmniejszenia poziomu zanieczyszczeń w rejonie ulicy Wawelskiej w Warszawie.
Aim: Road tunnel construction, especially in urban areas, leads to the reduction in the emission of solid and gaseous pollutants within the area of the constructed tunnel, and at the same time to a significant increase in the concentration of this pollution in the areas where the exhaust air is discharged from the tunnel. The article presents a simulation of how nitrogen dioxide coming from car exhaust spreads in the area of the analyzed street and a simulation of changes in its concentration in the case of tunnel building with longitudinal ventilation with and without air purification system. At the same time analysis of the effectiveness of using air purification technology in tunnels was carried out. Introduction: Reports concerning air quality in Europe place Poland among the most polluted countries. Exhaust emission from cars is the main reason for the high concentration of air pollutants in cities. Construction of road tunnels is one of the methods to reduce the content of solid and gaseous pollutants in the air in cities. This solution leads to a significant reduction in the emission of pollutants, especially gaseous ones, within the area of a tunnel; however, the ventilation air discharged from the tunnel generates locally, in the areas of tunnel portals, an increased concentration level of solid and gaseous pollutants. All over the world, in city tunnels, systems of purifying large volumes of ventilation air streams from solid and gaseous pollutants are used – examples are Mont Blanc tunnel in Alps connecting Chamonix in France and Courmayeur in Italy and the M30 tunnel in Madrid, where ventilation air from the tunnels is purified before it is removed to the atmosphere. Methodology: In order to study the impact of a road tunnel on the concentration levels of selected air pollutants, a location included in the conceptual design of a road tunnel in Warsaw, along Wawelska Street, was selected. The emission of selected gaseous pollutants from car engines was modelled using Computational Fluid Dynamics for the current situation on Wawelska Street (vehicle traffic on the road), for the construction of a tunnel with a longitudinal ventilation without an air purification system, and for the construction of a tunnel with longitudinal ventilation with an air purification system. The levels of air pollution concentration for the analysed cases were juxtaposed with one another. Conclusions: The comparison of the results of numerical analyses with the results of the air pollution concentration study in the area of Wawelska street in Warsaw, which was conducted by the Warsaw University of Technology staff, confirmed the adopted numerical modelling assumptions for the current state. The results of the analyses concerning the predicted concentration of air pollution in the variant of tunnel construction without an air purification system showed a significant reduction in pollution in the area of Wawelska Street and largely exceeded pollution concentration limits in the area of the tunnel portals. Moreover, the results of numerical analyses confirmed that the construction of a tunnel with an air purification system was the most favourable solution, leading to the reduction of pollution in the area of Wawelska Street in Warsaw.
Źródło:
Bezpieczeństwo i Technika Pożarnicza; 2016, 43, 3; 215-222
1895-8443
Pojawia się w:
Bezpieczeństwo i Technika Pożarnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Model matematyczny zmian stężenia wodoru w atmosferze. Rzeczywista sytuacja obliczeniowa dla obiektu z systemem wentylacji
A Mathematical Model of the Change of Hydrogen Concentration. Sample Computations for a Real-Life Situation in a Ventilated Room
Autorzy:
Zielicz, A.
Drzymała, T.
Kieliszek, S.
Łukaszek-Chmielewska, A.
Powiązania:
https://bibliotekanauki.pl/articles/373581.pdf
Data publikacji:
2018
Wydawca:
Centrum Naukowo-Badawcze Ochrony Przeciwpożarowej im. Józefa Tuliszkowskiego
Tematy:
zagrożenie wybuchem
wentylacja
ochrona przeciwpożarowa
model matematyczny
explosion hazard
ventilation
fire protection
mathematical model
Opis:
Cel: Celem artykułu jest analiza zmian stężenia wodoru w atmosferze w dużych pomieszczeniach lub obiektach, w których przewiduje się ciągłą niewielką emisję tego gazu. Analizę przeprowadzono w odniesieniu do obiektu z systemem wentylacji, w którym znaczna część powietrza wyciąganego jest zawracana do pomieszczenia, w celu zapewnienia odzysku ciepła. Świeże powietrze stanowi niewielką część powietrza nawiewanego. W hali nie występują źródła emisji substancji szkodliwych. Analiza dotyczy całej objętości pomieszczenia, a nie stref w pobliżu źródła emisji. Efektem końcowym jest określenie zmian stężenia wodoru w pomieszczeniu w funkcji czasu i odniesienie uzyskanych wyników do granic wybuchowości. W szczególności wyznaczono, po jakim czasie stężenie wodoru osiągnie poziom krytyczny. Metody: Artykuł napisano w oparciu o opracowany model obliczeniowy. W modelu uwzględniono: wydajność źródła emisji, wydajność wentylacji, objętość pomieszczenia, udział powietrza zawracanego w powietrzu nawiewanym. W celu uzyskania wzorów opisujących, jak zmienia się zawartość wodoru (lub innej wydzielanej substancji) w pomieszczeniu, wykorzystano równania różniczkowe. Równania te wyznaczają zależność między nieznaną funkcją a jej pochodnymi. Obecnie prowadzi się szereg badań nad kolejnymi schematami rozwiązywania równań różniczkowych, gdyż mają one wiele zastosowań praktycznych. Wyniki: Po opracowaniu modelu matematycznego dla analizowanego przypadku obliczeniowego sporządzono reprezentatywne wykresy. Otrzymane wykresy pozwalają prognozować zmiany stężenia wodoru w pomieszczeniu, w funkcji czasu oraz określić, kiedy stężenie wodoru osiągnie poziom krytyczny. Przedstawiona metodyka może być przydatna w ocenie zagrożenia wybuchem, a w wielu przypadkach może rozwiać wiele wątpliwości związanych z tym tematem. Model matematyczny może być stosowany bez ograniczeń w odniesieniu do substancji tworzących z powietrzem mieszaniny wybuchowe; powietrze zawierające substancje szkodliwe nie powinno być zawracane. Wnioski: Na podstawie analizy danych obliczeniowych zarysowano wnioski dotyczące regulacji prawnych. Wskazana jest nowelizacja rozporządzenia w sprawie ochrony przeciwpożarowej budynków, innych obiektów budowlanych i terenów. W oparciu o przedstawiony model, poparty obliczeniami dla rozpatrywanego przykładu, sformułowano wnioski końcowe. Zaproponowany model matematyczny stanowi przydatne narzędzie inżynierskie. Przy jego pomocy można określić dla pomieszczenia maksymalną ilość substancji palnej, której gęstość względem powietrza ≤ 1 oraz powiązać objętość krytyczną Hkr z wydajnością wentylacji. Model pozwala również określić czas, po którym zostanie przekroczona Hkr; ma to znaczenie w przypadku konieczności oszacowania czasu reakcji. Przedstawione ilustracje potwierdzają poprawność modelu.
Objectives: The aim of this article is to analyse the change of concentration of hydrogen in the atmosphere of large closed spaces with a constant but small emission of hydrogen. The analysis has been conducted for a room equipped with a ventilation system where, in order to retain heat, a significant portion of the exhaust air is recycled and turned back into the room. Thus, fresh air makes up only a part of the air blown into the room. Moreover, it is assumed that there are no sources of harmful substances in the room. In our analysis, we consider the entire room and not only the spaces near the source of emission. Our investigation allowed us to describe how the concentration of hydrogen changes in time and to relate these results to the explosive limits. In particular, we were able to determine the time after which the hydrogen concentration would reach a critical level. Methods: A calculation model was developed for the purposes of this paper. This model takes into account the efficiency of the source of emission, the efficiency of the ventilation system, the volume of the room and the portion of the exhaust air which is recycled. In order to obtain formulas describing how the content of hydrogen (or other emitted substance) changes, differential equations were used in the room. These equations determine the relationship between an unknown function and its derivatives. Currently, a number of studies are being conducted to develop further models for solving differential equations, as they have many practical applications. Results: Once the mathematical model was developed, a set of representative diagrams has been plotted using data from a real-life situation. The graphs which we obtained make it possible to predict how hydrogen concentration changes as a function of time, and to determine when the concentration reaches a critical level. The methods presented here can be useful in assessing the explosion hazard, and in many cases could clarify many doubts related to this issue. The mathematical model is applicable without restrictions for substances that form explosive mixtures with air; air containing harmful substances should not be recycled. Conclusion: Based on the analysis of the obtained data, we drew conclusions regarding current legal regulations in Poland. We recommend that the existing regulation regarding the fire protection of buildings and other structures and areas. Based on the presented model, supported by calculations for the example under consideration, the final conclusions were formulated. The proposed mathematical model is a useful engineering tool and can be useful in determining the maximum amount of substance with air density ≤ 1 in room atmosphere and allows the critical volume Hkr to be linked to ventilation efficiency. The model can also be used to determine the time after which Hkr will be exceeded; this is important for the estimation of the response time. The presented figures confirm that the model is correct.
Źródło:
Bezpieczeństwo i Technika Pożarnicza; 2018, 49, 1; 66-74
1895-8443
Pojawia się w:
Bezpieczeństwo i Technika Pożarnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Identification and Evaluation of Technical and Operational Parameters of Mobile Positive Pressure Ventilation Fans Used during Rescue Operations
Identyfikacja i ocena parametrów techniczno-użytkowych mobilnych wentylatorów nadciśnieniowych stosowanych podczas działań ratowniczych
Autorzy:
Kaczmarzyk, Piotr
Klapsa, Wojciech
Janik, Paweł
Krawiec, Piotr
Powiązania:
https://bibliotekanauki.pl/articles/2060727.pdf
Data publikacji:
2021
Wydawca:
Centrum Naukowo-Badawcze Ochrony Przeciwpożarowej im. Józefa Tuliszkowskiego
Tematy:
mobile positive pressure ventilation fans
tests
functional properties
mobilne wentylatory nadciśnieniowe
badania
właściwości użytkowe
Opis:
Aim: The aim of the article is to indicate the essential technical and operational parameters of mobile fans and to present the proposed testing methodologies (as well as dedicated infrastructure) allowing to confirm the indicated features. Project and methods: In many places around the world, scientists conduct tests related to the use of mechanical tactical ventilation with the use of mobile positive pressure ventilation fans. These devices are used by fire protection units, among others, for the removal of thermal decomposition products resulting from fires, posing a threat to people staying in construction facilities during events and hindering rescue operations. Achieving the expected effects through the use of mechanical tactical ventilation depends on many factors, among others, on the appropriate technical parameters and the ability to use the fan. Describing the essential features that should be characterized by the devices in question, attention in particular should be paid to: mobility, durability, reliability and effectiveness. To confirm these features, mobile fans should be tested using properly validated test methodologies. This publication presents a draft of the test program that allows to confirm the effectiveness of mobile fans, i.e. aerodynamic efficiency (flow rate), stream shape (area of the effective speed distribution), operating time, noise, weight and dimensions. Conclusions: Mobile fans used by fire protection units are an important tool supporting the effectiveness of rescue operations. However, in order for them to be used in an optimal way, it is necessary to comprehensively examine the technical parameters, and then – adequately to these parameters – to develop appropriate procedures for their use. In the context of the aforementioned testing, despite the large scientific achievements in this field, there are still areas that require improvement, with particular emphasis on standardized testing methodologies and the measurement infrastructure dedicated to them. For this reason, the authors indicated important technical and functional features that determine the effectiveness of mobile fans and recommended selected methods on the basis of which these features can be verified. The intention of the project is to provide rescuers with greater comfort when choosing and using the devices in question. The basis for this comfort is to be aware of the availability of equipment with confirmed functional characteristics and the possibility of referring to the developed guidelines for the proper use of fans in accordance with their parameters.
Cel: Celem artykułu jest wskazanie istotnych parametrów techniczno-użytkowych mobilnych wentylatorów oraz przedstawienie propozycji metodyk badawczych (a także dedykowanej infrastruktury) pozwalających potwierdzić wskazane cechy. Projekt i metody: W wielu miejscach na świecie naukowcy prowadzą badania związane ze stosowaniem mechanicznej wentylacji taktycznej z wykorzystaniem mobilnych wentylatorów nadciśnieniowych. Urządzenia te są wykorzystywane przez jednostki ochrony przeciwpożarowej m.in. do usuwania powstałych w wyniku pożarów produktów rozkładu termicznego, stanowiących zagrożenie dla osób przebywających w trakcie zdarzeń w obiektach budowlanych oraz utrudniających działania ratownicze. Osiągnięcie oczekiwanych efektów poprzez zastosowanie mechanicznej wentylacji taktycznej zależy od wielu czynników, m.in. od odpowiednich parametrów technicznych oraz umiejętności zastosowania wentylatora. Opisując istotne cechy, jakimi powinny charakteryzować się przedmiotowe urządzenia, w szczególności należy zwrócić uwagę na: mobilność, trwałość, niezawodność oraz skuteczność działania. Aby potwierdzić te cechy, mobilne wentylatory powinny zostać poddane badaniom z wykorzystaniem odpowiednio zwalidowanych metodyk badawczych. W niniejszej publikacji przedstawiono projekt programu badań, pozwalający uwierzytelnić efektywność działania mobilnych wentylatorów, tj.: wydajność aerodynamiczną (wielkość przepływu), kształt strugi (powierzchnię efektywnego rozkładu prędkości), czas pracy, hałas, masę oraz wymiary. Wnioski: Mobilne wentylatory, stosowane przez jednostki ochrony przeciwpożarowej, stanowią ważne narzędzie wspomagające efektywność prowadzonych działań ratowniczych. Jednak, aby mogły być one wykorzystywane w sposób optymalny, konieczne jest wszechstronne zbadanie parametrów technicznych, a następnie – adekwatne do tych parametrów – opracowanie odpowiednich procedur ich użycia. W kontekście wspomnianych badań, pomimo dużego dorobku naukowego w tej dziedzinie, nadal można dostrzec obszary wymagające doskonalenia, ze szczególnym uwzględnieniem znormalizowanych metodyk badawczych oraz dedykowanej im infrastruktury pomiarowej. Z tego względu zespół autorski wskazał istotne cechy techniczno-użytkowe warunkujące efektywność działania mobilnych wentylatorów oraz zarekomendował wybrane metody, na podstawie których cechy te mogą zostać zweryfikowane. Intencją przedsięwzięcia jest zapewnienie ratownikom większego komfortu przy wyborze oraz korzystaniu z omawianych urządzeń. Podstawą tego komfortu ma być świadomości dysponowania sprzętem o potwierdzonych cechach użytkowych oraz możliwość odwołania się do opracowanych wytycznych w zakresie prawidłowego użytkowania wentylatorów zgodnie z posiadanymi przez nie parametrami.
Źródło:
Safety and Fire Technology; 2021, 58, 2; 74--91
2657-8808
2658-0810
Pojawia się w:
Safety and Fire Technology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
How to protect staircases in case of fire in mid-rise buildings. Real scale fire tests
Jak zabezpieczyć klatki schodowe w budynkach średniowysokich na wypadek pożaru. Wyniki badań rzeczywistych
Autorzy:
Kubicki, Grzegorz
Tekielak-Skałka, Izabela
Cisek, Marcin
Powiązania:
https://bibliotekanauki.pl/articles/2060826.pdf
Data publikacji:
2019
Wydawca:
Centrum Naukowo-Badawcze Ochrony Przeciwpożarowej im. Józefa Tuliszkowskiego
Tematy:
smoke management
fire tests
fire ventilation
staircase
kontrola
dym
próba ogniowa
wentylacja pożarowa
schody
Opis:
Purpose: The aim of the analysis was to investigate how smoke would spread in the building in the case of fire, and how to protect staircases without a pressure differential system (PDS). It was assumed that a ventilation system should: – prevent the staircase against complete smokiness. The part of the staircase located below the level covered by the fire should be smoke-free to the extent allowing the evacuation of people from the fire compartments; – remove smoke from the staircase as fast as possible to prevent a significant increase in the level of pressure in the staircase. Project and methods: Research was conducted in a full-scale 9-storey building. Three real fires were simulated. Typical apartment furnishings were used in the fires. A smoke ventilation system was installed in the staircase with variable make-up air supply. Tests were carried out for the following configurations of smoke ventilation systems: – natural smoke exhaust with natural/gravitational make-up air; – natural smoke exhaust with a mechanical (fixed volume of 14000 m3/h) make-up air inlet; – natural smoke exhaust with a variable mechanical make-up air inlet. The position of the door between the staircase and the apartment was used as an additional variable. The measurements included temperature, light transmittance in the staircase, pressure difference between the staircase and the external environment, and the flow of the air and smoke through the smoke damper. Results: The results of the research show that the system of gravitational smoke ventilation is susceptible to ambient conditions such as temperature. In some tests, it was observed that smoke could descend below the storey covered by the fire. The conducted research helped determine the best way to reduce the amount of smoke in the staircase. The use of mechanical air supply in the smoke ventilation system facilitated fast smoke removal from the staircase, and the proper air and smoke flow direction (from the test room to smoke exhaust devices). The use of mechanical make-up air supply in the smoke ventilation system prevented the smoke from descending below the storey covered by the fire, so that the staircase on the floor covered by the fire could remain free from smoke in the lower part, providing a way of escape from the level covered by the fire. Conclusions: The conducted tests have revealed that the best solution to protect staircases without PDSs is to use a smoke ventilation system comprising a smoke vent mounted at the top and mechanically adjusted make-up air supply on the ground level.
Cel: Celem badań była analiza rozprzestrzenia się dymu pod kątem oceny skuteczności różnych systemów oddymiania klatki schodowej. Założono, że działanie takiej instalacji powinno: – zapobiegać zadymieniu części klatki schodowej, znajdującej się poniżej kondygnacji, na której zlokalizowany jest pożar, – po odcięciu napływu dymu na klatkę schodową, oczyszczać tę przestrzeń z dymu w krótkim czasie – realizacja oddymiania klatki schodowej nie może prowadzić do znacznego wzrostu nadciśnienia w klatce schodowej. Projekt i metody: Badania przeprowadzone zostały w 9-kondygnacyjnym budynku rzeczywistym. W ramach badań wykonano m.in. trzy prawdziwe pożary w pełnej skali. Każdy z pożarów inicjowany był w zaadaptowanym pomieszczeniu wyposażonym każdorazowo w identyczny zestaw mebli i elementów wyposażenia. Na klatce schodowej zainstalowano system oddymiania ze zmiennym dopływem powietrza uzupełniającego. Testy przeprowadzono dla następujących konfiguracji systemów oddymiania: – naturalny układ oddymiania z naturalnym / grawitacyjnym powietrzem uzupełniającym; – naturalny układ oddymiania z mechanicznym (stała wartość objętości 14000 m3/h) wlotem powietrza uzupełniającego; – naturalny układ oddymiania ze zmiennym mechanicznym wlotem powietrza uzupełniającego. Dodatkową zmienną było położenie drzwi między klatką schodową a mieszkaniem. Podczas testów rejestrowano: temperaturę (72 punkty pomiarowe), transmitancję światła (poziom zadymienia), różnicę ciśnień między klatką schodową a otoczeniem zewnętrznym oraz przepływ powietrza i dymu przez klapę dymu. Dodatkowo stale monitorowane były podstawowe parametry atmosferyczne (siła i kierunek wiatru, temperatura i wilgotność powietrza). Wyniki: Wyniki badań wykazały wysoką wrażliwość grawitacyjnego systemu oddymiania na warunki otoczenia (zaobserwowano, że w niekorzystnych warunkach dym może opaść poniżej kondygnacji objętej pożarem). Najskuteczniejszą i najbardziej odporną na zakłócenia metodą oddymiania był mechaniczny dopływ powietrza. Pozwolił on na szybkie usunięcie dymu ze schodów oraz prawidłowe, stałe i właściwe ukierunkowanie przepływu. System ten nie dopuszczał do opadania dymu poniżej kondygnacji objętej pożarem, zaś regulacja wydajności w zależności od przepływu na klapie zabezpieczała przestrzeń klatki schodowej przed wzrostem nadciśnienia. Wnioski: Najlepszą metodą oddymiania klatki schodowej jest zastosowanie klapy dymowej oraz mechanicznie regulowanego dopływu powietrza uzupełniającego na poziomie wyjścia z budynku.
Źródło:
Safety and Fire Technology; 2019, 54, 2; 6--20
2657-8808
2658-0810
Pojawia się w:
Safety and Fire Technology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Modelowanie CFD wentylacji pożarowej w tunelu drogowym
CFD Modelling of Fire Ventilation in Road Tunnels
Autorzy:
Porowski, R.
Bańkowski, P.
Klapsa, W.
Starzomska, M.
Więckowski, A.
Powiązania:
https://bibliotekanauki.pl/articles/373734.pdf
Data publikacji:
2018
Wydawca:
Centrum Naukowo-Badawcze Ochrony Przeciwpożarowej im. Józefa Tuliszkowskiego
Tematy:
wentylacja pożarowa
pożary w tunelach drogowych
modelowanie pożarów
fire ventilation
fires in road tunnels
fire modelling
Opis:
Cel: Celem pracy było wykonanie symulacji numerycznej rozwoju pożaru w tunelu drogowym za pomocą programu Fire Dynamics Simulator. Na tej podstawie została dokonana analiza wpływu mocy źródła pożaru na efektywność działania systemu wentylacji pożarowej. W pierwszej części artykułu przedstawiono zagadnienia związane z rozwojem pożaru. Skupiono się na aspektach teoretycznych parametrów, takich jak: rozchodzenie się dymu, rozwój pożaru, widzialność, szybkość wydzielania ciepła oraz temperatura maksymalna. Systemy wentylacji pożarowej, które są stosowane w tunelach drogowych zostały przedstawione na schematach, a także omówione zostały zasady ich działania. Kolejną część artykułu poświęcono przedstawieniu podstaw teoretycznych programu Fire Dynamics Simulator. Ostatnia część pracy zawiera opis przeprowadzonych badań oraz analizę i porównanie wyników. W części badawczej wykonano symulacje czterech scenariuszy, w zależności od mocy pożaru. Zebrane dane zostały poddane analizie. Sprawdzono, jak zachowuje się pożar w przestrzeni zamkniętej w zależności od mocy jego źródła. Dodatkowo przetestowano efektywność działania zastosowanego systemu wentylacji. Łącznie wykonano symulacje numeryczne z mocami pożaru: 202 MW, 157 MW, 119 MW oraz 67 MW. Metodologia: Artykuł został opracowany na podstawie przeglądu literatury i dostępnych w niej wyników prac naukowych dotyczących dynamiki zjawiska pożaru w tunelach drogowych, jak również badań numerycznych CFD w programie Fire Dynamics Simulator. Wnioski: Na podstawie wykonanych badań numerycznych przybliżono zjawiska, jakie zachodzą w trakcie pożaru w tunelu drogowym. Otrzymane dane można analizować i interpretować, wyciągając przy tym wnioski, które mogą zwiększyć bezpieczeństwo w tunelach. Jednym z najważniejszych aspektów, który ma bezpośredni wpływ na bezpieczeństwo ludzi podczas pożaru jest dobór odpowiedniego systemu wentylacji. Na rynku istnieje wiele rozwiązań systemowych, posiadających zarówno wady, jak i zalety. W badanych przypadkach wykorzystano wentylację wzdłużną wraz z dwoma wentylatorami wywiewnymi. Wentylacja wzdłużna wytwarzała przepływ powietrza o prędkości 2 m/s w całym przekroju tunelu. Na podstawie otrzymanych wyników można stwierdzić, że przepływ powietrza o prędkości 2 m/s ogranicza rozprzestrzenianie się ciepła na wysokości 1,8 m od poziomu podłoża tunelu, niezależnie od mocy pożarów przyjętych w badaniach. Najwcześniej temperatura zaczęła wzrastać dla pożaru o mocy 119 MW, a najpóźniej dla pożaru o mocy 67 MW. W dalszych częściach tunelu temperatura zmieniała się w wąskim zakresie i nie przekroczyła 22 ̊C. Temperatura nad źródłem dochodziła do wartości 700 ̊C, natomiast za centrum pożaru maksymalna temperatura wynosiła około 1200 ̊C.
Aim: The purpose of this work was to perform numerical simulation of fire development in a road tunnel using the Fire Dynamics Simulator (FDS) programme. On this basis, an analysis of the impact of the fire source's power on the effectiveness of the fire ventilation system was performed. The first stage of the work presents issues related to fire development. The focus was on presenting the theoretical part of the parameters, such as smoke propagation, fire development, visibility, heat release rate and maximum temperature. The next stage of the article focuses on presenting the theoretical foundations about the Fire Dynamics Simulator program. The last stage of the work contains a description of the conducted research, as well as the analysis and comparison of results. In the research part, simulations of 4 scenarios were carried out, depending on the fire power. The collected data was analysed and conclusions were drawn. It was checked how a fire in a confined space behaves depending on the power of the source. In addition, the effectiveness of the ventilation system used was tested. Introduction: Numerical simulations are used to improve fire safety in road tunnels. Numerical calculations allow to assess the suitability of the fire protection systems used. One such programme is the Fire Dynamics Simulator, which was discussed at work. In addition, theoretical issues related to fire development were presented. Issues such as maximum temperature, visibility, the process of smoke propagation and the power of fire were raised. Fire ventilation systems that are used in road tunnels are presented in the diagrams, along with the principles of their operation discussed. In total, numerical simulations with fire performance were performed: 202 MW, 157 MW, 119 MW and 67 MW.Methodology: The article was compiled on the basis of the review of literature available in the publications of the results of scientific works on the dynamics of the fire phenomenon in road tunnels, as well as numerical CFD studies in the Fire Dynamics Simulator program. Conclusions: Based on the numerical tests carried out, the phenomena that occur during a fire in a road tunnel are approximated. The data received can be analysed and interpreted, and conclusions can be drawn to increase safety in tunnels. One of the most important aspects that has a direct impact on the safety of people during a fire is the selection of an appropriate ventilation system. There are many system solutions on the market that have both pros and cons. In the cases studied, longitudinal ventilation was used along with two exhaust fans. Longitudinal ventilation generated airflow at the velocity of 2 m / s in the entire tunnel cross-section. Based on the obtained results, it can be concluded that the airflow rate of 2 m / s limits the spread of heat at a height of 1.8 m from the ground level of the tunnel, regardless of the power of fires adopted in the tests. The earliest temperature increase occurred for a 119 MW fire, and at the latest for a fire of 67 MW. In the further parts of the tunnel, the temperature changed in a narrow range and did not exceed 22 ̊C. The temperature over the source reached 700 ̊C, while the centre of the fire reached the maximum temperature of 1200 ̊C.
Źródło:
Bezpieczeństwo i Technika Pożarnicza; 2018, 52, 4; 140-166
1895-8443
Pojawia się w:
Bezpieczeństwo i Technika Pożarnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Koszt fizjologiczny pracy strażaka w ubraniu specjalnym
Physiological Impact on Firefighters Wearing Special Garments During Operations
Autorzy:
Węsierski, T.
Kowalczyk, P
Powiązania:
https://bibliotekanauki.pl/articles/373674.pdf
Data publikacji:
2015
Wydawca:
Centrum Naukowo-Badawcze Ochrony Przeciwpożarowej im. Józefa Tuliszkowskiego
Tematy:
badania ergospirometryczne
obciążenie strażaka
zużycie tlenu
wentylacja
rytm serca
ergo-spirometry
fireman workload
oxygen consumption
ventilation
heart frequency
Opis:
Cel: Celem artykułu jest określenie wpływu ubrania specjalnego na obciążenie strażaka w trakcie prowadzenia działań ratowniczych. Projekt i metody: W artykule przedstawiono wyniki badań wykonanych za pomocą ergospirometru Start 2000M. Badaniu poddano ratownika w wieku średnim, o przeciętnej budowie ciała (179 cm, 92 kg, 36 lat), powtarzając pomiar pięciokrotnie. Każde badanie było wykonane na czczo, w różnych dniach, w pomieszczeniu zamkniętym o stabilnych warunkach temperaturowych oraz wilgotności (21–22°C, wilgotność względna 33–41%). Użyte w badaniach czterowarstwowe strażackie ubranie specjalne spełniało wymagania normy PN-EN 469:2008. Masa ubrania w przeliczeniu na jednostkę powierzchni wynosiła 620 g/m2. Wyniki zostały odniesione do warunków pracy w stroju sportowym, które uznano za niepowodujące obciążenia termicznego i dające możliwie najwyższy komfort. Badania porównawcze wykonano w trakcie obciążenia pracą polegającą na stałym 10-minutowym szybkim marszu (v = 7 km/h) poprzedzonym czterominutowym okresem spoczynkowym. W toku badań rejestracji i analizie poddano takie parametry jak częstość skurczów serca (HR), wentylacja minutowa płuc (VE), zużycie tlenu na kilogram masy ciała (VMO2), częstość oddechu (BF). Wyniki: Wszystkie badane parametry wskazały wzrost obciążenia pracą w ubraniu specjalnym w odniesieniu do ubrania sportowego. Ponadto wszystkie zakresy analityczne poza częstością oddechową podczas pracy w obciążeniu dla ubrania specjalnego (VBF = 21,7%) charakteryzowały się współczynnikiem zmienności poniżej 20%, a zatem oznaczały niskie zróżnicowanie cechy. Potwierdzają to również niskie wartości niepewności pomiarowych, które poza BF są niższe od 5%. Żaden z przedziałów ufności dla α = 0,1 nie zazębiał się, a kryterium porównawcze w każdym z przypadków spełniało zależność |X2 – X1| > ΔX1 + ΔX2. Zatem wartości parametrów w ubraniu specjalnym można uznać za istotnie wyższe od parametrów w stroju sportowym z prawdopodobieństwem równym 90%. Wnioski: Różnica parametrów mierzonych pomiędzy strojem sportowym a ubraniem specjalnym jest duża i wynosiła co najmniej 16,7% (VM02), osiągając w przypadku BF aż 51%. Jako pomiar analizowany przyjęto pomiar będący medianą badanej serii pomiarowej odpowiednio dla ubrania specjalnego oraz stroju sportowego. Tak znaczne różnice wskazują konieczność podjęcia kroków mających na celu skonstruowanie ubrań specjalnych powodujących mniejsze obciążenie organizmu. Dane literaturowe wskazują, iż sam aspekt psychologiczny prowadzenia działań (np. przystąpienie do ataku na pożar) powoduje wzrost HR do 71% osobniczego HRmax oraz VE do ~56 dm3/min, co pokazuje konieczność ograniczenia innych czynników stresu – jednym z nich może być zbyt niski komfort pracy w ubraniu specjalnym.
Aim: The purpose of this article is to determine the demands placed on a firefighter as a result of wearing special garments during rescue operations. Design and Methods: The article presents results from research performed with the aid of ergo-spirometer Start 2000M. A middle aged firefighter, of average physical build (36 years of age, 179 cm high, 92 kg weight) was exposed to research tests which were repeated five times. Each test was performed after fasting, on different days in an enclosed space with stable temperature conditions and humidity (temperature in the range 21–22°C and relative humidity 33–34%). The mass of the garment was calculated at 620 g/m2. Results were compared with performance where sport attire was worn. It was assumed that wearing sportswear precluded generation of heat and probably afforded maximum comfort. Comparative tests were performed for constant workload sessions consisting of a 10-minute quick march (v = 7 km/h), preceded by a four minute rest period. During the course of research, parameters such as the heart rate (HR), lung ventilation per minute (VE), oxygen consumption for every kilogram of body weight (VMO2) and breathing rate (BF) were recorded and analyzed. Results: All tested parameters revealed a higher workload during tests, when the special garment was worn compared with sportswear. Additionally, all analysed parameters whilst attired in the special garment, apart from breathing frequency (VBF = 21.7%) were characterized by a variation coefficient of less than 20% (low population differential). This is confirmed by low uncertainty values, which are, apart from BF, lower than 5%. None of the confidence intervals for α = 0.1 overlapped, and the comparative criterion for each of the cases fulfilled the dependence |X2– X1| > ΔX1 + ΔX2. Thus, parameter values for a special garment are significantly higher than parameters for sportswear with a probability of 90%. Conclusions: The difference between measured parameters for sportswear and specialist garment is large, at least 16.7% (VMO2) and in the case of BF rising to 51%. The median of all measurements obtained during experiments, for conditions involving specialist attire and sportswear, was exposed to analysis. Such significant differences indicate a need for steps to manufacture special garments, which cause less stress on the body. Data contained in literature reveals that the psychological aspect alone, of performing operational activities (eg. initial approach to attack the fire) causes an increase in HR to 71% of an individual’s maximum heart rate and VE up to ~56 dm3/min. This indicates a need to minimise the influence of other stress factors, one of which may be relatively low comfort at work whilst wearing a special garment.
Źródło:
Bezpieczeństwo i Technika Pożarnicza; 2015, 2; 63-72
1895-8443
Pojawia się w:
Bezpieczeństwo i Technika Pożarnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zastosowanie technologii skaningu laserowego i termowizji do inwentaryzacji tunelu i znajdujących się w nim urządzeń przeciwpożarowych
The Use of Laser Scanning Technology and Infrared Thermography to Survey a Tunnel and its Fire Protection Devices
Autorzy:
Dronszczyk, P.
Strach, M.
Powiązania:
https://bibliotekanauki.pl/articles/373778.pdf
Data publikacji:
2016
Wydawca:
Centrum Naukowo-Badawcze Ochrony Przeciwpożarowej im. Józefa Tuliszkowskiego
Tematy:
systemy przeciwpożarowe
systemy wentylacyjne
tunel
skanowanie laserowe
termowizja
fire protection systems
ventilation systems
tunnel
laser scanning
infrared thermography
Opis:
Cel: Celem badań było przedstawienie wyników inwentaryzacji wybranych elementów wyposażenia przeciwpożarowego krakowskiego tunelu szybkiego tramwaju (KST). W pracach doświadczalnych zostały zastosowane nowoczesne techniki pomiarowe 3D ze szczególnym uwzględnieniem skanowania laserowego uzupełnionego o termowizję. W celu ułatwienia korzystania z opracowanych obiektów wszystkie dane zostały udostępnione zdalnie na portalu internetowym. Metody: Pomiary inwentaryzacyjne przeprowadzono z wykorzystaniem skanera laserowego 3D – Faro Focus X130. Skaner wykonuje jednocześnie pomiar kąta poziomego i pionowego oraz odległości do danego punku. Dodatkowo każdy punkt może posiadać atrybut koloru rzeczywistego w modelu przestrzeni barw RGB. Możliwe jest także wyświetlanie chmur punktów wraz z informacją o intensywności odbicia wiązki w skali szarości. Zbiory punktów zarejestrowanych na poszczególnych stanowiskach pomiarowych dają w rezultacie chmurę punktów reprezentującą geometrię obiektu. W ramach badań wykonano uzupełniające pomiary termowizyjne kamerą FLIR S60. W następnej kolejności skalibrowano ze sobą obrazy termowizyjne i połączono je z chmurą punktów uzyskaną ze skanowania laserowego. Wyniki: Otrzymane wyniki potwierdziły, że metoda skanowania laserowego, uzupełniona o obrazy termowizyjne, pozwala na uzyskanie bogatej informacji przestrzennej o mierzonym obiekcie. Wśród zinwentaryzowanych elementów wyposażenia obiektu można zidentyfikować: przewody prądowe, oświetlenie, rozdzielnie prądowe, przewody wentylacyjne czy też systemy przeciwpożarowe. Do tych ostatnich można zaliczyć: system przeciwdymowy wraz z systemem klap i kanałów. Wnioski: Wyniki przeprowadzonych badań inwentaryzacyjnych dowodzą, jak bardzo przydatne może być połączenie technologii skanowania laserowego i termowizji. Jest to szczególnie istotne w pomiarach obiektów ważnych z punktu widzenia bezpieczeństwa pożarowego. Przestrzenna wizualizacja ułatwia i usprawnia pozyskanie informacji oraz jej dalsze wykorzystanie. Zalety tych połączonych technik to przede wszystkim uzyskanie pełnej informacji o geometrii obiektu i urządzeniach towarzyszących. Cennym uzupełnieniem informacji o obiekcie jest wówczas termowizja, dzięki której można rozpoznać urządzenia czy elementy systemów o różniącej się temperaturze.
Aim: The main aim of the study was to present the results of a survey of a variety of fire-preventive equipment in the Kraków Fast Tram tunnel (KST). Experimental studies involved modern 3D surveying techniques, particularly 3D laser scanning and infrared thermography. In order to facilitate the use of the generated findings, all data have been made available remotely on a web portal. Methods: Survey measurements were taken using a Faro Focus X130 3D laser scanner. The scanner simultaneously performs vertical and horizontal angle measurements and calculates the distance to a given point. In addition, each point can have a real colour value in RGB space. It is also possible to present point clouds together with the intensity values in grayscale. The collections of points registered at individual vantage points result in a cloud of points representing the geometry of the object. Additional thermal measurements were carried out as part of the study, using a FLIR S60 camera. Finally, thermal images were calibrated and merged with the point cloud obtained from the laser scanning. Results: The results confirmed that laser scanning, together with thermal, images allows us to obtain detailed spatial information about the surveyed structure. Among the surveyed elements of the structure’s equipment the following can be identified: cable trays, lighting, switchboards, ventilation ducts, and fire-protection systems. The latter include a smoke protection system, together with valves and channels. Conclusions: The results demonstrate the usefulness of combining 3D laser scanning measurements and infrared thermography. This is especially important in the measurement of objects responsible for security and fire safety. Spatial visualisation facilitates and streamlines the acquisition of data and their further use. The primary advantage of combining these two techniques is the acquiring of complete geometrical information on the object and the corresponding devices. Another valuable addition is infrared thermography. It allows the identifying of devices or items in a single system with varying temperatures.
Źródło:
Bezpieczeństwo i Technika Pożarnicza; 2016, 43, 3; 199-214
1895-8443
Pojawia się w:
Bezpieczeństwo i Technika Pożarnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Possibilities of Using Mobile Fans and the Parameters Conditioning the Effectiveness of Tactical Mechanical Ventilation
Możliwości wykorzystania mobilnych wentylatorów i parametry warunkujące skuteczność taktycznej wentylacji mechanicznej
Autorzy:
Kaczmarzyk, Piotr
Janik, Paweł
Klapsa, Wojciech
Bugaj, Grzegorz
Powiązania:
https://bibliotekanauki.pl/articles/2060715.pdf
Data publikacji:
2022
Wydawca:
Centrum Naukowo-Badawcze Ochrony Przeciwpożarowej im. Józefa Tuliszkowskiego
Tematy:
mobile positive pressure fans
tactical mechanical ventilation
rescue operations
mobilne wentylatory nadciśnieniowe
taktyczna wentylacja mechaniczna
działania ratownicze
Opis:
Aim: The aim of the article is to indicate the possible scope of application of mobile fans during the execution of rescue actions and identification of the parameters conditioning the effectiveness of using this type of units. Method Design: Mobile overpressure fans are a tool used during rescue operations mainly to remove hot gases and smoke, which accumulate in confined spaces covered by fire – primarily within the evacuation routes, but also in the rooms. In literature there are examples of other uses of the considered fans, e.g. to support the liquidation of fire hazards of free-standing objects (i.e. fires of cars or containers) and the rescue of trapped people in inaccessible spaces by supplying fresh air. This paper, which is based on literature review, is devoted to providing an approximation of the above applications. The effective use of mobile fans requires specialized theoretical and practical preparation. Therefore, the study also identified factors that may determine the successful implementation of the adopted tactical intent, which include in particular: the selection of appropriate openings (outlet and inlet), the selection of the gas exchange path and the proper positioning of a mobile fan. Conclusions: Literature analysis of the problem presented in this paper will be a fundamental point of reference for the research work carried out in subsequent stages related to the evaluation of the efficiency of mobile fans. As part of this work, large-scale tests will be carried out using appropriately designed and constructed test benches to evaluate the effectiveness of mobile units in real conditions. The knowledge gained in this way is intended to serve as material for further considerations on the creation of concepts of both subsequent methodologies and test stands required for their implementation, enabling the verification of parameters characterizing the efficiency and reliability of mobile fans.
Cel: Celem artykułu jest wskazanie możliwego zakresu zastosowania mobilnych wentylatorów w trakcie realizacji działań ratowniczych oraz identyfikacja parametrów warunkujących efektywność stosowania tego typu jednostek. Projekt metody: Mobilne wentylatory nadciśnieniowe są narzędziem wykorzystywanym podczas działań ratowniczych głównie do usuwania gorących gazów i dymu, które gromadzą się w przestrzeniach zamkniętych objętych pożarem – przede wszystkim w obrębie dróg ewakuacyjnych, ale także w pomieszczeniach. W literaturze przedmiotu można spotkać przykłady innych sposobów wykorzystania rozpatrywanych wentylatorów, np. do wspomagania likwidacji zagrożeń pożarowych obiektów wolnostojących (tj. pożarów samochodów lub kontenerów) oraz działań związanych z ratowaniem osób uwięzionych w trudno dostępnych przestrzeniach poprzez dostarczanie świeżego powietrza. Niniejszy artykuł, który został oparty na przeglądzie literatury przedmiotu, poświęcono przybliżeniu powyższych zastosowań. Efektywne wykorzystanie mobilnych wentylatorów wymaga specjalistycznego przygotowania teoretycznego i praktycznego. W związku z powyższym w opracowaniu zidentyfikowano również czynniki mogące warunkować pomyślną realizację przyjętego zamiaru taktycznego, do których zaliczyć należy w szczególności: wytypowanie odpowiednich otworów (wylotowego i wlotowego), obranie toru wymiany gazowej oraz właściwe ustawienie mobilnego wentylatora. Wnioski: Przedstawiona w niniejszej publikacji literaturowa analiza problemu będzie stanowiła zasadniczy punkt odniesienia dla realizowanych w kolejnych etapach prac badawczych związanych z oceną efektywności działania mobilnych wentylatorów. W ramach wspomnianych prac przeprowadzone zostaną testy w dużej skali, z wykorzystaniem odpowiednio zaprojektowanych i wykonanych stanowisk badawczych, pozwalające ocenić efektywność działania mobilnych jednostek w warunkach rzeczywistych. W zamierzeniach pozyskana w ten sposób wiedza posłuży jako materiał do dalszych rozważań nad stworzeniem koncepcji zarówno kolejnych metodyk, jak i wymaganych do ich zrealizowania stanowisk badawczych, umożliwiających sprawdzenie parametrów charakteryzujących skuteczność i niezawodność działania mobilnych wentylatorów.
Źródło:
Safety and Fire Technology; 2022, 59, 1; 58--82
2657-8808
2658-0810
Pojawia się w:
Safety and Fire Technology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wentylacja oddymiająca w garażach – rozwiązania kontrowersyjnych problemów na przykładach projektowych
The Smoke Ventilation of Car Parks – Solutions to Controversial Issues Based on the Case Studies
Autorzy:
Brzezińska, D.
Ollesz, R.
Powiązania:
https://bibliotekanauki.pl/articles/373526.pdf
Data publikacji:
2017
Wydawca:
Centrum Naukowo-Badawcze Ochrony Przeciwpożarowej im. Józefa Tuliszkowskiego
Tematy:
wentylacja pożarowa
wentylacja strumieniowa
przejście ewakuacyjne
CFD
symulacje komputerowe
smoke ventilation
jet fan systems
exit way
simulations
Opis:
Cel: Celem artykułu jest próba odpowiedzi na wielokrotnie stawiane przez projektantów i rzeczoznawców ds. zabezpieczeń przeciwpożarowych pytania: Czy właściwe jest wydłużanie przejść ewakuacyjnych przy stosowaniu wentylacji strumieniowej? Czy występowanie w garażu dwóch kierunków ewakuacji jest w przypadku przejść ewakuacyjnych istotnym czynnikiem wpływającym na bezpieczeństwo ludzi? Czy symulacje komputerowe mogą być wystarczającym narzędziem do oceny kryteriów bezpiecznej ewakuacji użytkowników garażu bez względu na długość przejść ewakuacyjnych wynikającą z obowiązujących przepisów? Jakie czynniki rzeczywiście decydują o skuteczności działania systemów oddymiania garaży? Wprowadzenie: Bezpieczeństwo pożarowe w garażach, szczególnie podziemnych, jest w Polsce jednym z głównych tematów podejmowanych na wielu sympozjach i konferencjach. Szczególnie dyskusyjne są kwestie związane z oddymianiem garaży. Od wielu lat stosowane są dwa odmienne systemy oddymiania – strumieniowe i kanałowe, których skuteczność bywa różna. Projektanci, poza bezpośrednim spełnieniem obowiązujących przepisów, w celu zrealizowania i zweryfikowania systemów wentylacji pożarowej opierają się na dostępnych źródłach wiedzy technicznej oraz wynikach symulacji komputerowych. Mimo że analizy komputerowe zazwyczaj umożliwiają w danym garażu, przy zastosowaniu konkretnego systemu oddymiania, prawidłową ocenę warunków bezpiecznej ewakuacji użytkowników garażu i warunków prowadzenia działań gaśniczych, wciąż trwają dyskusje nad teoretycznymi różnicami w skuteczności działania wentylacji kanałowej i strumieniowej, szczegółowymi wymaganiami przepisów itp. Było to dla autorek motywacją do zaprezentowania niniejszego artykułu, w którym podjęto próbę odpowiedzi na najbardziej nurtujące pytania z zakresu projektowania systemów wentylacji pożarowej w garażach. Metodologia: Artykuł opracowano na podstawie najnowszej literatury przedmiotu oraz wynikach analiz rozprzestrzeniania się dymu i ciepła (dokonanych za pomocą symulacji komputerowej Computational Fluid Dynamics – CFD) w przykładowych garażach podziemnych. Przedstawione wnioski są poparte wieloletnią praktyką autorek w zakresie wykonywania w Polsce analiz zabezpieczeń przeciwpożarowych z wykorzystaniem metod inżynierskich. Wnioski: Ocena zaprezentowanych wyników symulacji komputerowych CFD pozwala stwierdzić, że obecnie obowiązujące w Polsce przepisy z zakresu ochrony przeciwpożarowej garaży są niedoskonałe. Najwłaściwszym podejściem do oceny poziomu bezpieczeństwa użytkowników garaży wydają się indywidualne analizy z wykorzystaniem metod inżynieryjnych i symulacji komputerowych. Przyglądając się obowiązującym przepisom, warto zwrócić uwagę na rozbieżności w wymaganiach stawianych w Polsce i w innych krajach. Wymagania te są znacząco różne zwłaszcza w przypadku dopuszczalnych długości przejść ewakuacyjnych. Szczególnym problemem w Polsce wydaje się brak zróżnicowania dopuszczalnych długości przejść w zależności od liczby dostępnych kierunków ewakuacji, na co w innych krajach kładzie się bardzo duży nacisk.
Aim: The aim of the article is to attempt to answer controversial questions asked for many years in Poland: Is it appropriate to extend the length of exit routes when jet-fan ventilation is used? Are the two-exitway directions in the event of evacuation are an important factor affecting the safety of people? Can computer simulations be a sufficient tool to assess the safe evacuation of car-park users, regardless of the length of exitways, as prescribed in the applicable regulations? What are the factors that actually determine the effectiveness of smoke-exhaust systems in car parks? Introduction: Fire safety in car parks, especially underground car parks, is one of the main topics of many symposia and conferences in Poland. The discussions are particularly related to their smoke-control systems. For many years, two alternative smoke-control systems – jet fans and ducts – have been competing with each other. Their effectiveness is often different. Designers, in order to achieve and verify fire-ventilation systems, rely both on regulations and the available sources of technical knowledge and computer simulations. Although most computer analyses allow unequivocal assessment of safety conditions in a specific car park, where a duct or jet-fan ventilation system is installed, there are ongoing discussions over theoretical differences in the effectiveness of these systems, specific requirements set out in the regulations in force, etc. This controversy inspired this article and motivated its authors to answer the most important questions centred around the problem of the designing of fire-ventilation systems in car parks. Methodology: The paper was developed based on the latest literature and the results of the authors’ own CFD (Computational Fluid Dynamics) analyses of smoke and heat spread in sample underground car parks. The presented conclusions are supported by the authors’ longstanding, practical experience in analyses of car-park smoke control systems, utilising engineering methods and performed all over Poland. Conclusion: The assessment of the CFD computer simulation results presented in the article leads to the conclusion that the current Polish regulations for fire protection in car parks are inadequate. The most appropriate approach to the assessment of the level of car-park user safety is usually an individual analysis using engineering methods and computer simulations. Looking at the applicable Polish law, it is worth paying attention to how the requirements differ from those in place in other countries, particularly in the case of requirements which are significantly different, especially as regards the maximum permitted lengths of exitways. The most important problem in Poland seems to be the lack of a difference between the maximum length of exitways where there is only one exit route (one direction) and where there are more exit directions
Źródło:
Bezpieczeństwo i Technika Pożarnicza; 2017, 45, 1; 130-141
1895-8443
Pojawia się w:
Bezpieczeństwo i Technika Pożarnicza
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies