Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Toxicity" wg kryterium: Temat


Tytuł:
Nikotyna
Nicotine
Autorzy:
Szymańska, J.
Frydrych, B.
Bruchajzer, E.
Powiązania:
https://bibliotekanauki.pl/articles/137854.pdf
Data publikacji:
2007
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
nikotyna
toksyczność
NDS
nicotine
toxicity
MAC-value
Opis:
Nikotyna jest bezbarwną, bezwonną i oleistą cieczą otrzymywaną z liści tytoniu przez destylację z parą wodną w środowisku zasadowym i ekstrakcję eterem. Największe zużycie nikotyny jest związane z produkcją wyrobów tytoniowych, a także z produkcją środków, których zażywanie ma na celu odzwyczajenie się od palenia. Nikotyna jest składnikiem niektórych pestycydów. Narażenie zawodowe na nikotynę możliwe jest przy produkcji i suszeniu tytoniu. Zatrucia śmiertelne zdarzały się w latach 20. i 30. XX w. w trakcie opryskiwania roślin preparatami z nikotyną. Obecnie w Polsce tylko 8 osób było narażonych na nikotynę o stężeniu w powietrzu przekraczającym wartość NDS, tj. 0,5 mg/m3 (dane z 2002 r.). Do śmiertelnego zatrucia zawodowego nikotyną dochodzi bardzo rzadko. Objawami ostrego zatrucia małymi dawkami nikotyny są: pobudzenie oddechu, nudności, wymioty, bóle i zawroty głowy, biegunka, częstoskurcz, wzrost ciśnienia krwi oraz pocenie i ślinienie się. Po dużych dawkach nikotyny stwierdzono ponadto pieczenie w jamie ustnej, gardle i żołądku. Później następowało wyczerpanie, drgawki, osłabienie czynności oddechowej, zaburzenie rytmu serca oraz zaburzenia koordynacji ruchowej i śpiączka. Śmierć może wtedy nastąpić w czasie od 5 min do 4 h. Zatrucia przewlekłe nikotyną prowadzą do zaburzeń układu krążenia. Zmiany naczyniowe sprzyjają powstawaniu dusznicy bolesnej oraz zawałom serca, a także powodują: osłabienie pamięci, zwolnienie procesów psychicznych i koordynacji myśli, brak energii oraz ogólne wyczerpanie. Obserwuje się również zaburzenia ze strony przewodu pokarmowego. Nikotyna jest związkiem, który powoduje uzależnienie fizyczne i psychiczne. W dostępnym piśmiennictwie nie znaleziono danych epidemiologicznych dotyczących zawodowego narażenia na nikotynę w postaci czystej. Nikotyna jest substancją o dużej toksyczności ostrej dla zwierząt – po podaniu dożołądkowym wartość DL50 mieści się w granicach 3,34 ÷ 188 mg/kg masy ciała. Informacje na temat toksyczności nikotyny wskazują na jej wielokierunkowe działanie. Narażenie drogą pokarmową szczurów na dawkę 1 mg/kg/dzień nikotynę przez 9 dni nie spowodowało żadnych zmian. Podobnie żadnych skutków nie zanotowano po podawaniu nikotyny szczurom w dawce 1,14 mg/kg/dzień przez 34 tygodnie. Dawka czterokrotnie większa powodowała wzrost aktywności niektórych enzymów w sercu szczurów narażonych przez 34 tygodnie. Podobna dawka podawana przez 9 dni wywoływała zmiany w zapisie EEG. Narażenie szczurów na nikotynę w dawce 3,5 mg/kg/dzień przez 90 dni oraz na nikotynę w dawce 12,5 mg/kg/dzień przez 28 dni (dawka skumulowana wynosiła odpowiednio: 315 lub 350 mg/kg) powodowało u zwierząt zaburzenia w gospodarce lipidowej i węglowodanowej. Z obserwacji zależności efektu toksycznego od wielkości narażenia po podaniu dożołądkowym nikotyny można przyjąć za wartość NOAEL dawkę 1,14 mg/kg/dzień, a za wartość LOAEL dawkę 4,56 mg/kg/dzień. Nikotyna nie wykazuje działania mutagennego, ale jest jednak genotoksyczna (wymiana chromatyd siostrzanych i aberracje chromosomowe) oraz fetotoksyczna. Udowodnione działanie rakotwórcze wykazują nitrozoaminy – związki powstające w wyniku palenia się tytoniu (NNN i NNK). Nikotyna dobrze wchłania się przez drogi oddechowe, przewód pokarmowy i skórę. Największe stężenia nikotyny stwierdzono w mózgu, nerkach, błonie śluzowej żołądka, rdzeniu nadnerczy, błonie śluzowej nosa i śliniankach. Nikotyna wiąże się z białkami osocza w 5 20% i przenika przez łożysko oraz do mleka matek karmiących. W trakcie metabolizmu nikotyna może ulegać: C-oksydacji, demetylacji połączonej z C-oksydacją, N-oksydacji oraz N-metylacji. Jej głównymi metabolitami są: kotynina i nikotyno-1’-N-tlenek. Nikotyna i jej metabolity są szybko wydalane przez nerki. Mechanizm działania nikotyny jest wypadkową aktywacji cholinergicznych receptorów nikotynowych powodujących pobudzenie komórek nerwowych i desensytyzacji powodującej zablokowanie przekaźnictwa sympatycznego. Działania obwodowe wywołane małymi dawkami nikotyny są wynikiem pobudzenia zwojów autonomicznych i obwodowych receptorów czuciowych, głównie w sercu i płucach. Pobudzenie tych receptorów wywołuje częstoskurcz, zwiększenie wyrzutu serca, wzrost ciśnienia tętniczego, zmniejszenie perystaltyki przewodu pokarmowego i pocenie się. Najbardziej rozpowszechnionym wśród ludzi przykładem działania łącznego nikotyny z innymi związkami jest palenie papierosów, w których – oprócz nikotyny – znajdują się setki innych substancji. Jednoczesnemu narażeniu szczurów na nikotynę i etanol towarzyszyło znaczące zmniejszenie ich płodności oraz zaburzenie reakcji immunologicznych u potomstwa. Nikotyna nasila hepatotoksyczne działanie CCl4. Na podstawie danych literaturowych przyjęto dawkę 1,14 mg/kg/dzień (po której nie zaobserwowano żadnych szkodliwych skutków) za wartość NOAEL nikotyny, zaś dawkę 4,56 mg/kg/dzień – za jej wartość LOAEL Po analizie danych literaturowych i wykonanych obliczeniach pozostano przy obowiązującej w Polsce wartości najwyższego dopuszczalnego stężenia (NDS) nikotyny wynoszącej 0,5 mg/m3 z oznaczeniami związku literami „Sk” i „Ft”. W dostępnym piśmiennictwie nie znaleziono informacji uzasadniających wyznaczenie dla nikotyny wartości najwyższego dopuszczalnego stężenia chwilowego (NDSCh).
Nicotine is an oily, colourless and odourless liquid obtained from leaves of tobacco plants. The most widespread use of nicotine is in tobacco as well as in remedies for nicotine abuse. Nicotine is a component of certain pesticides. Occupational exposure to nicotine is possible during its production and the tobacco drying process. To date only 8 people have been exposed in Poland to nicotine concentration in the air exceeding the TWA value which is 0.5 mg/m3 (data from 2002). Deadly occupational nicotine intoxication is very rare. The symptoms of severe nicotine intoxication with its small doses are: increased breath stimulation, nausea, vomitting, headache and vertigo, diarrhea, tachycardia, high blood pressure as well as sweating and excessive saliva production. After the administration of high doses of nicotine the following symptoms occured: burning sensations in the oral cavity, throat and stomach, fatigue, palpitations, weakening of the respiratory functions, disturbances of cardiac rhythm, dizziness, weakness, lack of coordination and coma. Death can then occur within 5 minutes up to 4 hours. Chronic nicotine intoxication leads to disturbances in the circulatory system. Vascular changes may lead to angina pectoris and heart attacks; they also cause: a weakening of memory, a slowdown of physical processes and thought coordination, lack of energy and exhaustion. Disturbances in the digestive system may also occur. Nicotine causes both physical and mental abuse. No epidemiological data was found concerning occupational exposure to nicotine in pure form. Nicotine is a substance of high acute toxicity to animals. After intragastrical administration the LD50 value is between 3.34 ÷ 188 mg/kg of body weight. Information concerning toxicity of nicotine indicates its multidirectional influence. Exposure of rats at oral doses (1 mg/kg/day, 9 days or 1.14 mg/kg/day, 34 weeks) caused no changes. When fourfold higher doses were administered to rats, after 34 weeks they caused an increase in the activity of certain enzymes in the heart, and the EEG changed after 9 days. Exposure to nicotine for 28 and 90 days (the accumulated dose was 350 or 315 mg/kg respectively) caused a disturbances in lipid and carbohydrate metabolism. Nicotine has no mutagenic potential, yet it is genotoxic (sister chromatid exchanges and chromosomal aberrations) as well as fetotoxic. Nitrosoamines (compounds produced due to tobacco smoking) have proved to show carcinogenic potential. Nicotine is well absorbed via respiratory tracts, the alimentary canal and the skin. The highest concentrations were detected in the brain, kidneys, stomach mucosa, adrenal medulla, nasal mucosa and salivary glands. Nicotine binds with plasma proteins in 5 - 20%. It penetrates through placenta and gets to the milk of nursing mothers. During metabolism nicotine can undergo: C-oxidation, demethylation with z C-oxidation, N-oxidation and N-methylation. Nicotine’s core metabolites are: cotinine and nicotine-1’-N-oxide. Nicotine and its metabolites are rapidly discharged by the kidneys. Smoking cigarettes is the most common example of nicotine activity together with many other compounds. In addition to nicotine, they include hundreds of other substances. Rats simultaneously exposured to ethanol and nicotine have shown impaired fertility and disturbance of immunological reactions occured in the offspring. Nicotine increases the hepatotoxic activeness of CCl4. Basing on the literature data 1.14 mg/kg/day has been accepted as a NOAEL value of nicotine (no negative results have been observed) whereas 4.56 mg/kg/day has been taken as its LOAEL value. After an analysis of published data and after conducting necessary calculations the MAC of nicotine in Poland remains unchanged: 0.5 mg/m3 with ‘Sk’ and ‘Ft’ compound symbols.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2007, 2 (52); 121-154
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Chlorodifluorometan. Dokumentacja proponowanych wartości dopuszczalnych wielkości narażenia zawodowego
Chlorodifluorometan
Autorzy:
Rydzyński, K.
Gromadzińska, J.
Powiązania:
https://bibliotekanauki.pl/articles/137635.pdf
Data publikacji:
2004
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
Chlorodifluorometan
działanie toksyczne
toksykinetyka
chlorodifluoromethane
toxicity
toxicokinetics
Opis:
Chlorodifluorometan (freon 22, CF22) jest bezbarwnym, bezwonnym, niepalnym gazem. Stosowany jest jako czynnik chłodzący w urządzeniach i systemach chłodniczych (np. w lodówkach, chłodniach i klimatyzatorach). Chlorodifluorometan powstaje w reakcji chloroformu i fluorowodoru w obecności katalizatorów. Jest gazem o małej toksyczności zarówno przy ostrych, jak i przewlekłych narażeniach. Chlorodifluorometan o dużych stężeniach, powyżej 177 g/m3 (50 000 ppm), może powodować lekkie bóle i zawroty głowy oraz zadyszkę. CF22 nie wykazuje działania mutagennego, rakotwórczego ani teratogennego. W dużej liczbie prac wskazano na możliwość wystąpienia zaburzeń rytmu serca u ludzi w wyniku narażenia na CF22. Niemniej jednak przedstawione zależności między występowaniem arytmii a wielkością narażenia nie były jednoznaczne. Zespół Ekspertów zaproponował, podczas ustalania wartości NDS chlorodifluorometanu oprzeć się na wynikach przewlekłego inhalacyjnego badania na zwierzętach. U szczurów narażonych na CF22 o stężeniach 3,54 i 35,4 g/m3 5 h dziennie, 5 dni tygodniowo przez 118 tygodni (samice) i 131 tygodni (samce) nie stwierdzono żadnych skutków narażenia. Natomiast narażenie na związek o wyższym stężeniu 177 g/m3 spowodowało u samic istotny wzrost masy nerek, nadnerczy i przysadki. Według EPA stężenie 35,4 g/m3 chlorodifluorometanu przyjęto za wartość NOAEL działania układowego tego freonu. Proponuje się przyjąć wartość NDS CF22 na poziomie 3000 mg/m3. Wartość ta powinna jednocześnie zabezpieczyć pracowników przed potencjalnymi skutkami działania kardiotoksycznego. Nie ma podstaw do wyznaczenia wartości NDSCh chlorodifluorometanu.
Chlorodifluorometan (CF22) is a colorless, nonflammable gas with very low toxicity. FC22 is used as an aerosol Extremely high vapors concentrations (177 g/m3) may cause headache, nausea and shortness of breath. Some epidemiological reports have shown excess irregular heartbreakin exposed population.Based on the NOAEL value obtained in an experimental study (35400 mg/m3) and appropriate uncertainty factors, a TLV has been calculated and proposed at 3000 mg/m3.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2004, 1 (39); 19-35
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Ksylen – mieszanina izomerów
Xylene (all isomers)
Autorzy:
Ligocka, D.
Powiązania:
https://bibliotekanauki.pl/articles/137769.pdf
Data publikacji:
2007
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
ksylen
działanie toksyczne
narażenie zawodowe
xylene
toxicity
Opis:
Nazwa ksylen obejmuje wszystkie izomery ksylenu: orto-, meta- i para-. Produkt techniczny zawiera mieszaninę izomerów ksylenu oraz zwykle również etylobenzen, a jej skład jest zmienny i zależy od sposobu jej otrzymywania. W mieszaninie najwięcej jest m-ksylenu (44 ÷ 70%), natomiast p-ksylen i o-ksylen występują w ilości po około 20%, a etylobenzen stanowi 6 ÷ 10%. Ksylen jest otrzymywany podczas katalitycznej rafinacji ropy naftowej, powstaje też jako produkt uboczny pirolizy cięższych frakcji benzyny. Najwięcej produkowanego ksylenu zużywa się do wzbogacania paliw (zawartość 10 ÷ 22%). Stosowany jest on też jako rozpuszczalnik farb, lakierów, klejów, powłok, żywic alkilowych, środków ochrony roślin (zawartość w preparatach 0,5 ÷ 99%), w syntezie organicznej oraz jako środek czyszczący i odtłuszczający. U ludzi narażanych na ksylen o dużym stężeniu występują głównie objawy działania na ośrodkowy układ nerwowy (zaburzenia równowagi, wydłużenie czasu reakcji prostej i zmniejszenie sprawności manualnych) oraz objawy działania drażniącego na błony śluzowe oczu i dróg oddechowych. Nie ma danych na temat działania przewlekłego ksylenu oraz badań epidemiologicznych ludzi narażonych tylko na ksylen. W warunkach przemysłowych narażenie na ksylen występuje głównie drogą inhalacyjną. Retencja wszystkich izomerów ksylenu jest taka sama i wynosi około 60%, a 95% wchłoniętego ksylenu ulega przemianom metabolicznym, głównie do kwasów metylohipurowych, które są wydalane z moczem. Z powietrzem wydychanym wydala się 5% ksylenu w postaci niezmienionej. Na podstawie wyników badań toksyczności ostrej i przewlekłej ksylenu u zwierząt wykazano względnie małą toksyczność związku, który nie wykazuje działania mutagennego ani rakotwórczego. Za podstawę zaproponowania wartości najwyższego dopuszczalnego stężenia (NDS) ksylenu przyjęto wyniki badań u ludzi narażanych na ksylen w warunkach kontrolowanych. U ludzi narażanych na ksylen o stężeniu 435 mg/m3 obserwowano zmiany w funkcjach ośrodkowego układu nerwowego mierzone zaburzeniem czasu reakcji prostej i czasu reakcji z wyborem (LOAEL). Do obliczenia wartości NDS zastosowano współczynnik związany z różnicą wrażliwości osobniczej oraz współczynnik wynikający z zastosowania wartości LOAEL zamiast wartości NOAEL. Proponuje się przyjęcie stężenia 100 mg/m3 ksylenu za jego wartość NDS, co powinno zabezpieczyć pracowników przed możliwością wystąpienia szkodliwych skutków działania związku na ośrodkowy układ nerwowy. Proponuje się także oznakowanie substancji literami „Sk” ze względu na możliwość jej wchłaniania przez skórę oraz literą „I” ze względu na działanie drażniące ksylenu. Nie ustala się wartości najwyższego dopuszczalnego stężenia chwilowego (NDSCh) ksylenu ze względu na to, że skutki jego działania drażniącego występują po narażeniu na związek o znacznie większych stężeniach niż wynika to z wyliczeń, w których uwzględniono wartości RD50. Proponuje się przyjąć wartość dopuszczalnego stężenia w materiale biologicznym (DSB) równą 1,4 g kwasów metylohipurowych/g kreatyniny lub litr moczu o średniej gęstości 1,024.
Xylene occurs in three isomeric forms: ortho, meta, and para. Commercial xylene is a mixture of the three isomers with m-xylene usually the principal component. There is no difference in the toxicity of the individual isomers. Liquid xylene is absorbed through intact human skin. However inhalation is the main way of occupational exposure to xylene. The available data do not provide evidence for the carcinogenicity of xylenes in humans. In experiment on mice RD50 for xylenes was about 10 000 mg/m3. In human volunteers exposed 4 h to 435 mg/m3 xylene impairment of performance on tests of memory and reaction time was observed (LOAEL). According to the above, the MAC-STEL of 100 mg/m3 and the skin (Sk) and irritation (I) notation is recommended. The measurement of total methylhippuric acids in urine collected at the end of shift is recommended. The BEI value is 1.4 g/g creatinine or 1 l of urine of density 1.024g/cm3.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2007, 4 (54); 139-165
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Deposition and Retention of Ultrafine Aerosol Particles in the Human Respiratory System. Normal and Pathological Cases
Autorzy:
Gradoń, L.
Orlicki, D.
Podgórski, A.
Powiązania:
https://bibliotekanauki.pl/articles/89980.pdf
Data publikacji:
2000
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
nanoparticles
clearance
deposition
retention
toxicity
nanocząstki
retencja
toksyczność
Opis:
The particle number concentration in ambient air is dominated by nanometersized particles. Recent epidemiological studies report an association between the presence of nanoparticles in inhaled air at the workplace and acute morbidity and even mortality in the elderly. A theoretical model of deposition of 20 nm particles in the human alveolus was formulated. Gas flow structure and deposition rate were calculated for alveoli with different elastic properties of lung tissue. Data obtained in the paper show increased convective effects and diffusional rate of deposition of nanoparticles tor alveoli with higher stiffness of the alveolar wall. The retention of deposited particles is also higher in these pathological alveoli. Results of our calculations indicate a possibility of existence of a positive loop of coupling in deposition and retention of nanoparticles in the lung with pathological changes.
Źródło:
International Journal of Occupational Safety and Ergonomics; 2000, 6, 2; 189-207
1080-3548
Pojawia się w:
International Journal of Occupational Safety and Ergonomics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Bromoetan. Dokumentacja proponowanych wartości dopuszczalnych wielkości narażenia zawodowego
Bromoethane
Autorzy:
Gralewicz, S.
Wiaderna, D.
Powiązania:
https://bibliotekanauki.pl/articles/137909.pdf
Data publikacji:
2004
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
bromoetan
działanie toksyczne
działanie rakotwórcze
bromoethane
toxicity
carcinogenicity
Opis:
Bromoetan jest bezbarwną, lotną, łatwo palną cieczą o eterycznym zapachu. W ubiegłym wieku bromoetan był używany podczas zabiegów chirurgicznych jako środek znieczulający. Obecnie jest wykorzystywany w przemyśle chemicznym i farmaceutycznym jako rozpuszczalnik oraz związek alkilujący w procesie syntezy związków organicznych. Do niedawna był również stosowany w systemach chłodniczych jako środek chłodzący. Bromoetan działa drażniąco na skórę, śluzówkę górnych dróg oddechowych i oczy. Wywiera szkodliwe działanie na układ nerwowy, krążenia i oddechowy, a także na wątrobę i nerki. Działa mutagennie na szczepy TA100 i TA1535 Salmonella typhimurium w warunkach aktywacji metabolicznej i bez aktywacji metabolicznej. Mutagenne właściwości bromoetanu stwierdzono także w badaniach na komórkach Escherichia coli ze szczepu WP2(hc-). U szczurów i myszy narażanych chronicznie (dwa lata) na bromoetan o stężeniach 445 - 1780 mg/m3 (100 - 400 ppm) stwierdzono częstsze występowanie nowotworów nadnerczy, płuc i macicy. Pod względem kancerogenności bromoetan został zaklasyfikowany do grupy A2 przez NTP (Narodowy Program Toksykologiczny, USA) i do grupy A3 przez ACGIH. Ze względu na fakt, iż niewątpliwie kancerogenne działanie bromoetanu wykazano tylko u myszy, a nie ma dowodów kancerogennego działania tego związku u człowieka, nie zostały uwzględniowe, w wyliczeniach proponowanej wartości NDS, wyniki badania kancerogenności. Podstawę wyliczeń stanowiły wyniki badań toksyczności ogólnej w doświadczeniu długoterminowym (2 lata) na szczurach i myszach. Na podstawie uzyskanych w tym doświadczeniu wyników można sądzić, że u szczurów i myszy narażenie na bromoetan o stężeniu 890 mg/m3 5 dni w tygodniu, 6 h/dzień przez dwa lata nie wywołuje efektów toksycznych. Przyjmując stężenie 890 mg/m3 za wartość NOAEL, a także następujące współczynniki niepewności: B = 2 (różnice we wrażliwości osobniczej), A = 2 (różnice we wrażliwości gatunkowej) oraz E = 3 (współczynnik modyfikujący udokumentowane działanie kancerogenne u niektórych szczepów gryzoni), wyliczona wartość NDS bromoetanu wyniesie 74,2 mg/m3. Ponieważ jest ona zbliżona do obowiązującej w Polsce wartości NDS bromoetanu (50 mg/m3), dokonywanie zmiany tej wartości nie jest uzasadnione. Wartość NDSCh bromoetanu proponuje się ustalić tak jak dla substancji o działaniu drażniącym (2 razy wartość NDS), tj. na poziomie 100 mg/m3. Związek powinien zostać oznaczony literami „Sk”, wskazującymi na wchłanianie się substancji przez skórę.
Bromoethane is a colorless, volatile, flammable liquid. Bromoethane is an alkylating agent used in organic synthesis, in the manufacture of pharmaceuticals. It has been used as a refrigerant and solvent. In the last century bromoethane was used as an anesthetic. Bromoethane is the eyes, skin and mucous membranes tract irritant. The vapor can cause hepatic, cardiovascular and nervous system damage. The substance is mutagenic to Salmonella typhimurium TA100, TA1535 strain and Escherichia coli both with and without metabolic activation. The results of 2-year studies showed that inhalation exposure to bromoetane at the concentration of 445 ÷ 1780 mg/m3 (100 ÷ 400 ppm) significantly increases the number of adrenal glands, lungs and uterus tumors. Bromoethane is classified by ACGIH to A3 group and by NTP to A2 group. The TLV value for bromoethane was estimated on the basis of 2-year studies (rats and mice). The concentration of 890 mg/m3, 5 days/week, and 6h/day is a NOAEL value. The following uncertainty factors were used: 2 for differences between individuals, 2 for differences between species and modifying factor-3. Based on these data, the TLV value for bromoethane is proposed as 50 mgm/m3, STEL value as 100 mg/m3. Due to dermal absorption bromoethane should be mark as Sk.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2004, 1 (39); 5-18
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Tetrahydrofuran. Dokumentacja proponowanych wartości dopuszczalnych wielkości narażenia zawodowego
Tetrahydrofuran
Autorzy:
Skowroń, J.
Powiązania:
https://bibliotekanauki.pl/articles/137923.pdf
Data publikacji:
2004
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
tetrahydrofuran
narażenie zawodowe
działanie toksyczne
occupational exposure
toxicity
Opis:
Tetrahydrofuran (THF) jest cieczą o zapachu acetonu, otrzymywaną m.in. przez katalityczne uwodornienie bezwodnika malonowego lub furanu czy katalityczne odwodnienie 1,4-butandiolu. THF jest stosowany jako rozpuszczalnik olejów, tłuszczów, naturalnych i syntetycznych żywic oraz polimerów, głównie polichlorku winylu. Używany jest w produkcji lakierów, klejów, atramentów, farb, w syntezach paliw, witamin, hormonów, farmaceutyków, syntetycznych perfum, insektycydów i kaset magnetycznych. Jest związkiem pośrednim w syntezach chemicznych. Informacje, dotyczące toksyczności THF u ludzi, są fragmentaryczne. Zatruć ostrych u ludzi nie stwierdzono. W narażeniu inhalacyjnym THF o małych stężeniach powoduje bóle głowy oraz podrażnienia błon śluzowych nosa i gardła. Podrażnienie oczu obserwowano po narażeniu na THF o stężeniu około 15 000 mg/m3, a po narażeniu na THF o stężeniu około 75 000 mg/m3 obserwowano ogólne znieczulenie, czemu towarzyszył spadek ciśnienia krwi i przyśpieszenie oddechu. Długotrwałe narażenie na THF może powodować zapalenia skóry. THF w doświadczeniach na zwierzętach wykazuje umiarkowaną toksyczność. Wartość DL50 dla zwierząt po podaniu dożołądkowym waha się w granicach 1650 ÷ 6210 mg/kg. Wartość medialnego stężenia letalnego dla niemal wszystkich gatunków, narażanych przez 3 h lub krócej, wynosi powyżej 61 740 mg/m3 (21 000 ppm). Jednorazowe inhalacyjne, krótkotrwałe (do 3 h) narażenie szczurów na THF o stężeniu 290 ÷ 14 700 mg/m3 wywoływało zwykle niewielkie miejscowe podrażnienie skóry i błon śluzowych. THF o stężeniach 24 000 ÷ 191 000 mg/m3 powodował u szczurów ospałość, spowolnienie oddechu, sinicę, zmiany w wątrobie, nerkach oraz śledzionie i płucach. Po wielokrotnym narażeniu szczurów na THF o stężeniach 294 ÷ 590 mg/m3 stwierdzono tylko niewielkie działanie drażniące na błony śluzowe nosa i tchawicy. THF o stężeniach 1000 ÷ 2000 mg/m3 powodował spadek masy ciała szczurów, niewielkie zmiany histologiczne i zmniejszenie ciśnienia krwi. Narażenie szczurów 12 ÷ 18-tygodniowych na THF o stężeniu około 2900 mg/m3 wywoływało, oprócz działania drażniącego, także zmiany w wątrobie, uszkodzenie nabłonka tchawicy oraz wzrost aktywności acetylocholinoesterazy w mięśniach. Narażenie szczurów na THF o stężeniach 5880 ÷ 8800 mg/m3 powodowało m.in. spadek masy ciała, zaburzenia funkcji wątroby, niewielkie zmiany histologiczne, leukocytozę, zmniejszenie ciśnienia krwi oraz zmiany w płucach. THF o stężeniu 14 700 mg/m3, największym stężeniu, na który narażano szczury przez 12 ÷ 13 tygodni, powodował, oprócz obserwowanych wcześniej skutków – także ataksję, uszkodzenie funkcji wątroby i płuc. THF nie wykazywał działania mutagennego, a dane o możliwości wystąpienia aberracji chromosomowych są niekompletne i niepewne. THF może być embriotoksyczny u myszy. Dane toksykokinetyczne są bardzo skąpe. Wiadomo, że THF wchłania się szybko w drogach oddechowych. Po inhalacyjnym narażeniu szczurów stwierdzano THF w mózgu i tkance tłuszczowej. Informacje o metabolizmie THF in vitro wskazują na możliwość hydroksylacji przy udziale enzymów mikrosomalnych oraz rozszczepienia pierścienia THF. Półokres eliminacji THF u ludzi wynosił 30 min. W dostępnej literaturze nie znaleziono informacji o mechanizmie działania toksycznego THF. Autorzy proponują zmniejszenie obowiązującej w Polsce wartości NDS THF z 600 mg/m3 do 150 mg/m3, a wartości NDSCh – z 750 mg/m3 do 300 mg/m3. Podstawą do zmiany wartości NDS są wyniki badań inhalacyjnych na zwierzętach, w których obserwowano po narażeniu na THF o stężeniach około 600 mg/m3 podrażnienie błon śluzowych.
Tetrahydrofuran (THF) is a liquid smelling of acetone; it is obtained by catalytic hydrogenation of malonyl anhydride or furane and catalytic dehydratation of 1,4-butandiole. THF is used as a solvent of oils, fats, natural and synthetic resins and polymers, especially vinyl polychloride. It is used to produce varnishes, inks, paints and glues, in synthesis of fuels, vitamins, hormones, pharmaceuticals, synthetic perfumes, insecticides and magnetic cassettes. It is an intermediary compound in chemical syntheses. Data concerning THF toxicity are scarce. In inhalatory exposition THF in low concentrations causes headaches and irritation of oral and nasal mucosa. Eye irritation has been observed after exposure to THF in concentrations approximating 15 000 mg/m3. Concentration of approx. 75 000 mg/m3 causes general anesthesia, accompanied by lowering of blood pressure and tachypnea. Prolonged exposure to THF may result in dermatitis. Acute poisonings in humans have not been observed. In experiments performed on animals it shows medium toxicity. DL50 value for animals after intragastrical administration varies between 1650 and 6210 mg/kg. The value of medial lethal concentration (CL50) for almost all species exposed for 3 hours or shorter is above 61 740 mg/m3 (21 000 ppm). Single inhalatory exposure (up to 3 hours) of rats to THF at concentrations between 290 and 14 700 mg/m3 has usually resulted in slight, local irritation of the skin and mucose membranes. Increasing concentrations to 24 000 ÷ 191 000 mg/m3 caused somnolence, reduced respiratory rate, cyanosis, changes in the liver, kidneys, spleen and lungs. After repeated exposure of rats to THF at concentrations between 294 and 590 mg/m3, insignificant irritating effect on mucous membranes of trachea and nose were detected. Concentration of 1000 ÷ 2000 mg/m3 caused loss in the rats’ bodyweight, slight histological changes and lowering of blood pressure. Exposure lasting for 12 ÷ 18 weeks at concentrations approximating 2900 mg/m3, apart from an irritating effect, resulted in changes in the liver, damage of trachea epithelium and increase in the activity of acethylcholinesterase in the muscles. Exposing rats to THF at concentrations between 5880 and 8800 mg/m3 caused, among others, loss in bodyweight, impairment of the liver functions, slight histological changes and leucocytosis, lowered blood pressure, as well as changes in the lungs. The highest concentration of THF (14 700 mg/m3) to which rats were exposed for 12 ÷ 13 weeks, apart from the effects mentioned before, also caused ataxia, impairment of the liver and lungs. THF did not display a mutagenic effect, and data concerning the possibility of chromosomal aberrations are not certain and not complete. THF might be embryotoxic in mice. Toxicokinetic data are very scarce. It is known that THF is quickly absorbed in the respiratory tract. After inhalatory exposure of rats, THF was detected in the brain and fat tissue. Data concerning THF metabolism in vitro suggest the possibility of hydroxylation by means of microsomal enzymes and the possibility of splitting the THF ring. THF half-life in humans was 30 minutes. No data about the mechanism of THF toxicity were found in literature. The authors of this study suggest reducing the MAC value accepted in Poland from 600 mg/m3 to 150 mg/m3, and the MAC (STEL) value from 750 mg/m3 to 300 mg/m3. The changes are suggested on the basis of inhalatory experiments on animals, where THF caused irritation of mucous membranes at concentrations of approx. 600 mg/m3.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2004, 1 (39); 117-145
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Karbendazym. Dokumentacja proponowanych wartości dopuszczalnych wielkości narażenia zawodowego
Carbendazim
Autorzy:
Sitarek, K.
Powiązania:
https://bibliotekanauki.pl/articles/137344.pdf
Data publikacji:
2004
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
karbendazym
narażenie zawodowe
działanie toksyczne
carbendazime
occupational exposure
toxicity
Opis:
Karbendazym jest białym, krystalicznym proszkiem stosowanym jako środek grzybobójczy. Jest on również metabolitem takich fungicydów, jak benomyl czy tiofanat metylu. W Polsce są stosowane 42 preparaty, zawierające karbendazym. Karbendazym należy do związków nieklasyfikowanych na podstawie siły działania toksycznego w warunkach narażenia ostrego. Wartość LD50 po jednorazowym podaniu do żołądka szczurów wynosi 6400 mg/kg. Karbendazym jest związkiem zaburzającym rozród zwierząt doświadczalnych; działa gonado toksycznie po podaniu samcom szczura, indukuje ponadto wady wrodzone u szczurów narażanych w okresie organogenezy oraz powoduje wzrost śmiertelności wewnątrzmacicznej. Karbendazym dobrze wchłania się z układu pokarmowego szczurów (80- 85% dawki ulega wchłonięciu), ale bardzo słabo wchłania się przez skórę. Związek ten nie kumuluje się w ustroju. Głównymi metabolitami karbendazymu wydalanymi z moczem szczurów są wodorosiarczan-2[(metoksykarbonylo)-amino]-1H-benzimidazolo- 5-ylo i kwas {2-[(metoksykarbo-nylo)-amino]-6-okso-1-tlenek-6H-benzimidazol-5-ilo-D glikopiranozydouranowy. Karbendazym ulega szybko wydaleniu z ustroju. W ciągu 72 h wydala się z moczem i kałem około 98% dawki podanej szczurom per os. Przyjmuje się, że mechanizm działania toksycznego tego związku polega na uszkodzeniu mikrotubul, struktur odpowiedzialnych między innymi za transport wewnątrzkomórkowy czy też podział komórek. Na podstawie wyników, przeprowadzonych w latach 90. badań genotoksyczności, ujawniono, że karbendazym powoduje wzrost częstości mikrojąder w szpiku kostnym myszy oraz w limfocytach krwi obwodowej ludzi. Zwrócono uwagę na fakt, że wyniki te nie powinny być lekceważone mimo słabej rozpuszczalności karbendazymu w wodzie i małej jego biodostępności. Na podstawie wyników badań rakotwórczości karbendazymu, przeprowadzonych na różnych szczepach myszy, wynika, że u myszy szczepów SPF-Swiss i szczepu CD-1 indukuje on raki i gruczolaki wątrobowokomórkowe. Natomiast u myszy szczepu NMRKf (SPF-71) nie ujawniono działania rakotwórczego po 96 tygodniach narażania na ten związek. Jednakże myszy dwóch pierwszych szczepów charakteryzuje duża spontaniczna częstość nowotworów wątroby i są one w związku z tym niewłaściwe do testowania substancji, mogących indukować nowotwory o tej lokalizacji. Wnioskowanie należy więc oprzeć na wynikach badania wykonywanego na myszach NMRKf (SPF 71) i uznać, że karbendazym nie jest czynnikiem rakotwórczym dla myszy. W piśmiennictwie nie znaleziono danych na temat działania rakotwórczego karbendazymu u ludzi. W Polsce nie ustalono dotąd wartości NDS i NDSCh karbendazymu**. Jedynie w ZSRR istniał normatyw NDSCh tego związku i wynosił on 0,1 mg/m3. Za podstawę proponowanej wartości NDS karbendazymu przyjęto fakt, iż związek ten jako metabolit benomylu powinien mieć wartość NDS na takim samym poziomie. Ustalone przez ACGIH oraz obowiązujące w większości państw wartości normatywne benomylu wynoszą 10 mg/m3, stąd dla karbendazymu proponuje się przyjęcie takiej samej wartości normatywu, tj. na poziomie 10 mg/m3. Ponieważ związek ten zaburza rozwój wewnątrzmaciczny należy go oznaczyć dodatkowo literami „Ft” – fetotoksyczny.
Carbendazim is the most widely used representative of the benzimidazole family of fungicides. It is also the main metabolite of benomyl in mammals the degradation product of benomyl in the environment. This chemical is well absorbed after oral exposure. The absorption by male rats administered a single oral dose of 12 mg/kg 14C-carbendazim was determined to be 85%. The main metabolite of this compounds in urine is methyl 5-hydroxy-2-imidazolecarbamate. It is not a carcinogenic agent. The Expert Group for Chemical Agents has established an 8-hour TWA value of 10 mg/m3 and suggested additional notation: Ft (fetotoxic substance).
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2004, 1 (39); 45-63
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Heksafluoropropen : dokumentacja proponowanych dopuszczalnych wielkości narażenia zawodowego
Hexafluoropropene : documentation of proposed values of occupational exposure limits (OELs)
Autorzy:
Świdwińska-Gajewska, A
Czerczak, S.
Powiązania:
https://bibliotekanauki.pl/articles/138517.pdf
Data publikacji:
2017
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
heksafluoropropen
toksyczność
narażenie zawodowe
NDS
hexafluoropropene
toxicity
occupational exposure
Opis:
Heksafluoropropen (HFP) jest bezbarwnym gazem stosowanym głównie jako monomer do produkcji fluorowych polimerów termoplastycznych, a także środka gaśniczego – heptafluoropropanu. Został zaklasyfikowany pod względem zagrożeń dla zdrowia jako substancja: działająca szkodliwe w następstwie wdychania, powodująca podrażnienie dróg oddechowych, mogąca spowodować uszkodzenie nerek w następstwie jednorazowego narażenia inhalacyjnego, a także przez długotrwałe lub powtarzane narażenie inhalacyjne. Heksafluoropropen nie ma w Polsce ustalonych normatywów higienicznych w środowisku pracy. Powodem, dla którego opracowano dokumentację i zaproponowano wartość najwyższego dopuszczalnego stężenia (NDS), jest informacja o produkcji heksafluoropropenu w Polsce. Substancja ta została zgłoszona (jako półprodukt) do Europejskiej Agencji ds. Chemikaliów przez rejestrującego (w rozumieniu rozporządzenia REACH) z siedzibą w Tarnowie. Nie ma wyników badań dotyczących działania toksycznego heksafluoropropenu na ludzi. U zwierząt narażanych inhalacyjnie na heksafluoropropen obserwowano przede wszystkim zmiany w nerkach: zwyrodnienie i martwicę nabłonka kanalików krętych. Przy większym stężeniu heksafluoropropenu u zwierząt obserwowano: obrzęk płuc, a także zaburzenie koordynacji i skurcze kloniczne, a ponadto zmiany względnej masy i aktywności kory nadnerczy, zmniejszenie względnej masy śledziony oraz zmiany w wątrobie. Na podstawie wyników badań biochemicznych wykazano zwiększenie ilości jonów fluorkowych i aktywności dehydrogenazy mleczanowej w moczu, a także zwiększenie stężenia kreatyniny oraz azotu mocznikowego w surowicy narażanych zwierząt. Zmiany parametrów krwi obejmowały także zmiany liczby: limfocytów, neutrofilów oraz eozynofilów. W badaniach dotyczących odległych skutków działania toksycznego, heksafluoropropen nie działał mutagennie w układach bakteryjnych ani na komórki ssaków. W testach w warunkach in vitro związek wywoływał aberracje chromosomowe w komórkach jajnika chomika chińskiego. W badaniach przeprowadzonych w warunkach in vivo na myszach zaobserwowano powstawanie mikrojąder w szpiku kostnym. Wynik ujemny uzyskano w teście na nieplanową syntezę DNA w hepatocytach szczurów oraz w teście dominujących mutacji letalnych u szczurów. Nie zaobserwowano wpływu heksafluoropropenu na rozrodczość. W dostępnym piśmiennictwie nie ma danych dotyczących działania rakotwórczego związku. Mechanizm działania toksycznego heksafluoropropenu jest związany z metabolizmem na drodze S-koniugacji z glutationem, a w szczególności z hydrolizą koniugatu. Przy udziale enzymu b-liazy dochodzi do rozkładu koniugatu i powstawania aktywnych tioli. Nefrotoksyczne działanie heksafluoropropenu jest związane z dużą aktywnością enzymów (b-liazy i N-deacetylazy), które przyczyniają się do powstawania aktywnych tioli w kanalikach nerkowych. Za podstawę do oszacowania wartości najwyższego dopuszczalnego stężenia (NDS) heksafluoropropenu w środowisku pracy przyjęto wyniki badania, w którym myszy i szczury narażano inhalacyjnie na związek przez trzy miesiące. Narządem krytycznym toksycznego działania heksafluoropropenu u gryzoni były nerki. Na podstawie wartość NOAEC wynoszącej 62 mg/m3 zaproponowano przyjęcie w Polsce wartości NDS dla heksafluoropropenu na poziomie 8 mg/m3. Nie ma podstaw do ustalenia wartości najwyższego dopuszczalnego stężenia chwilowego (NDSCh) oraz wartości dopuszczalnej w materiale biologicznym (DSB).
Hexafluoropropene (HFP) is a colorless gas. It is used mainly as a monomer for the production of thermoplastic fluoropolymers and as an extinguishing agent - heptafluoropropane. It has been classified for health hazards as a substance that is harmful if inhaled, may cause respiratory irritation and renal damage after a single exposure and through prolonged or repeated inhalation exposure. Hexafluoropropene does not have Maximum Admissible Concentration (MAC) value in Poland. The reason for developing the documentation of proposal for MAC value was the production of hexafluoropropene in Poland. This substance was registered as an intermediate product in the European Chemicals Agency by the registrant (within the meaning of the REACH Regulation) sited in Tarnów. There is lack of information on the toxic effects of occupational exposure to hexafluoropropene in humans. Degeneration and epithelial necrosis of the tubular lobules were observed in kidneys of laboratory animal after inhalation of hexafluoropropane. In the rodents exposed at higher concentrations of hexafluoropropene, pulmonary edema, coordination disorders and clonic contractions occurred. Exposure to hexafluoropropene induced changes in relative weight and activity of adrenal cortex, decrease in relative weight of spleen and changes in liver. Biochemical studies showed an increase of the level of fluoride ions and urinary lactate dehydrogenase activity and elevated serum creatinine and urea nitrogen in the exposed animals. Changes in blood parameters (count of lymphocytes, neutrophils and eosinophils) were also observed in rodents. In studies with the long-term effects of toxicity, hexafluoropropene was not mutagenic in bacterial systems or mammalian cells. In the in vitro tests, the compound induced chromosome aberrations in Chinese hamster ovary cells. In in vivo studies in mice, the formation of micronuclei in bone marrow was observed. The negative result was obtained in the assay for unplanned DNA synthesis test in rat hepatocytes and in the dominant rat mutation assay. No effect of hexafluoropropene on fertility was observed. There is no data on carcinogenicity. The mechanism of hexafluoropropene toxicity is related to metabolism: path-way of S-conjugation with glutathione, in particular hydrolysis of the conjugate. During decomposition of the conjugate by the enzyme -lyase, active thiols appeared. Nephrotoxic activity of hexafluoropropene is associated with high levels of enzymes (β-lyases and N-deacetylases), which contribute to the formation of active thiols in renal tubules. The results of 3-month inhalation study on mice and rats were the basis for calculation of the MAC value of the hexafluoropropene. The critical organs of hexafluoropropene toxicity to rodents are kidneys. Based on the NOAEC value of 62 mg/m3 , the MAC value for hexafluoropropene at 8 mg/m3 was proposed. Neither short-term value (STEL) nor biological tolerance limit was established.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2017, 4 (94); 35-53
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Akrylamid. Dokumentacja proponowanych dopuszczalnych wielkości narażenia zawodowego
Acrylamide. Documentation of suggested occupational exposure limits (OELs)
Autorzy:
Sapota, A.
Skrzypińska-Gawrysiak, M
Powiązania:
https://bibliotekanauki.pl/articles/958185.pdf
Data publikacji:
2014
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
akrylamid
toksyczność
narażenie zawodowe
NDS
acrylamide
toxicity
occupational exposure
MAC
Opis:
Akrylamid w temperaturze pokojowej występuje w postaci bezbarwnych kryształów lub płatków. Nie występuje w środowisku naturalnym, natomiast może się tworzyć w trakcie termicznej obróbki żywności (smażenie, pieczenie), występuje też w dymie papierosowym. Akrylamid jest sklasyfikowany jako substancja: toksyczna, stwarzająca poważne zagrożenie zdrowia w następstwie długotrwałego narażenia przez drogi oddechowe, w kontakcie ze skórą i po połknięciu. Akrylamid jest mutagenem kategorii 2. (1B) i związkiem rakotwórczym kategorii 2. (1B), działa szkodliwie na rozrodczość, a także drażniąco na oczy i skórę, może wywoływać reakcję uczuleniową skóry.Produkcja akrylamidu jest wielkotonażowa. Stosowany jest głównie do: syntezy poliakrylamidów stosowanych w procesach oczyszczania ścieków, produkcji papieru, przerobie rud, wytwarzaniu polimerów winylowych oraz jako szczeliwo podczas budowy zapór wodnych i tuneli. Żel poliakrylamidowy wykorzystuje się w procesie elektroforezy (PAGE) powszechnie stosowanej w wielu laboratoriach. Zawodowe narażenie na akrylamid może występować podczas: produkcji, dalszego przerobu i dystrybucji tego związku, a także stosowania związku w pracach budowlanych czy montażowych (np.: budowa tuneli, naprawa kanalizacji). Narażenie na akrylamid w Polsce występuje głównie w: zakładach chemicznych, farmaceutycznych oraz laboratoriach instytutów badawczych i uczelni wyższych.W Polsce w latach 2005-2010 ponad 2000 osób było narażonych na akrylamid (2525 osób w 2010 r.), z czego większość stanowiły kobiety. W latach 2011-2012 (wg danych GIS) nie było pracowników narażonych na stężenia akrylamidu w powietrzu, powyżej wartości najwyższego dopuszczalnego stężenia (NDS), tj. powyżej 0,01 mg/m³. Akrylamid wykazuje działanie neurotoksyczne. Kliniczny obraz ostrego i przewlekłego zatrucia u ludzi jest podobny, a dominującymi są takie objawy neuropatii obwodowej, jak: utrata czucia, parestezje (drętwienie/mrowienie dłoni i stóp), osłabienie mięśniowe oraz osłabienie odruchów ścięgnistych. Mogą ponadto wystąpić drżenia rąk i chwiejny chód, zmniejszenie wrażliwości na światło i zdolność rozróżniania barw. Objawy neuropatii obwodowej obserwowano istotnie częściej u pracowników, gdy stężenia akrylamidu na stanowiskach pracy wynosiły powyżej 0,3 mg/m³. W badaniach monitoringu biologicznego (addukty akrylamid z hemoglobiną, AA-Hb) pracowników narażonych na akrylamid ustalono wartość NOAEL dla objawów drętwienia/mrowienia rąk/stóp na poziomie 0,51 nmol AA-Hb/g globiny. Wartość ta odpowiada stężeniu akrylamidu w powietrzu wynoszącemu 0,1 mg/m³. U osób narażonych na akrylamid obserwowano także zapalenie skóry, objawiające się jej łuszczeniem, głównie na dłoniach. Na podstawie wyników badań toksyczności ostrej akrylamidu na zwierzętach wykazano, niezależnie od drogi narażenia, wystąpienie objawów neurotoksyczności. W dostępnym piśmiennictwie nie ma informacji o długoterminowych badaniach inhalacyjnych na zwierzętach. W badaniach podprzewlekłych i przewlekłych (po narażeniu drogą pokarmową lub dootrzewnową) obserwowano głównie neurotoksyczne działanie związku. Klinicznymi objawami narażenia zwierząt na akrylamid były zaburzenia koordynacji ruchowej i chodu oraz osłabienie kończyn tylnych prowadzące do paraliżu. U zwierząt w badaniach histopatologicznych stwierdzano głównie zwyrodnienie aksonów i komórek Schwanna w nerwach obwodowych i w rdzeniu kręgowym. Dla szczurów ustalono wartość NOAEL dla chronicznej neurotoksyczności na poziomie 0,5 mg/kg mc./ dzień. Akrylamid powodował zmiany patologiczne w narządach rozrodczych samców (zwyrodnienie nabłonka rozrodczego w jądrach i przewodach nasiennych, złuszczanie komórek rozrodczych w najądrzach oraz atrofię jąder). Standardowe testy na bakteriach nie wykazały zdolności akrylamidu do indukowania mutacji punktowych. Badanie mutacji genowych na komórkach ssaków w warunkach in vitro dały wynik niejednoznaczny. Niektórzy badacze przypuszczają, że aktywność akrylamidu może być związana z działaniem klastogennym (uszkodzenie chromosomu wyrażone jego złamaniem, co może prowadzić do zmiany organizacji struktury chromosomu wskutek nieprawidłowego połączenia się jego fragmentów w nową konfigurację). Akrylamid indukował aberracje chromosomowe, powodował poliploidalność i zaburzenia wrzeciona, co wskazuje na jego działanie aneuploidalne (obecność w komórce nieprawidłowej liczby chromosomów). Akrylamid powodował uszkodzenia DNA oraz nieplanową syntezę DNA, a także tworzył addukty z DNA oraz indukował wymianę chromatyd siostrzanych. Badania w warunkach in vivo dały dodatnie wyniki dla: aberracji chromosomowych, tworzenia mikrojąder i aneuploidii w szpiku kostnym, co sugeruje, że akrylamid jest bezpośrednio działającym mutagenem, ale prawdopodobnie powoduje skutek klastogenny, a nie mutacje genowe. Akrylamid wykazywał działanie mutagenne w komórkach rozrodczych samców. Wyniki dodatnie otrzymano dla skutków obejmujących: aberracje chromo-somowe, tworzenie mikrojąder, wymianę chromatyd siostrzanych, nieplanową syntezę DNA, dominujące mutacje letalne i dziedziczne translokacje. Za działanie mutagenne akrylamidu może być odpowiedzialny metabolit, glicydamid, który zarówno w badaniach przeprowadzonych w warunkach in vitro, jak in vivo powodował działanie mutagenne i genotoksyczne. Akrylamid działał rakotwórczo na szczury i myszy. U zwierząt w badaniach przewlekłych wykazano wzrost częstości występowania nowotworów u szczurów: tarczycy, jąder, gruczołów sutkowych, trzustki, serca, jamy ustnej i skóry, być może także ośrodkowego układu nerwowego (OUN) oraz u myszy: gruczołu Hardera, płuc, sutka, jajników oraz przedżołądka. Podobne działanie wykazywał także metabolit związku – glicydamid. Badania epidemiologiczne ludzi narażonych zawodowo, jak i środowiskowo (na akrylamid w diecie) nie dają jasnego obrazu zależności narażenia na związek a występowania nowotworów. W IARC zaklasyfikowano akrylamid do grupy 2A (substancja prawdopodobnie rakotwórcza dla ludzi), SCOEL zaliczył związek do grupy B rakotwórczości (genotoksyczne kancerogeny, dla których istniejące dane są niewystarczające do zastosowania modelu LNT). W badaniach na zwierzętach stwierdzono szkodliwy wpływ akrylamidu na płodność samców: zmniejszenie liczby plemników, zmiany morfologiczne nasienia, zaburzenia zachowań kopulacyjnych, dominujące mutacje letalne. U potomstwa samców narażonych na akrylamid stwierdzono zwiększenie resorpcji płodów i zmniejszenie liczebności miotów (skutek mutacji letalnych). Akrylamid nie wpływał na rozrodczość u samic. W badaniach toksyczności rozwojowej większość objawów u potomstwa obserwowano po dawkach akrylamidu powodujących toksyczność matczyną. Akrylamid dobrze wchłania się: drogą inhalacyjną, pokarmową (do 98% u szczurów, do 44% u myszy) i w mniejszym stopniu przez skórę; wiąże się specyficznie z krwinkami czerwonymi oraz spermatydami i przenika przez barierę łożyska. Akrylamid jest szybko metabolizowany przez sprzęganie z glutationem lub utlenianie przy udziale CYP2E1. Ten drugi szlak metaboliczny prowadzi do powstania epoksydowej pochodnej – glicydamidu (GA). Zarówno akrylamid, jak i GA wiążą się z hemoglobiną i/lub DNA. Akrylamid i jego metabolity ulegają wydalaniu z moczem. U ludzi po podaniu doustnym wydalało się z moczem w ciągu doby około 50% podanej dawki. Okres połowicznego wydalania oszacowano na około 3 h. Addukty hemoglobiny z akrylamidem i glicydamidem oraz metabolity obecne w moczu mogą służyć jako biomarkery narażenia na akrylamid. Za podstawę do zaproponowania wartości NDS akrylamidu przyjęto jego działanie neurotoksyczne na ludzi. U pracowników narażonych zawodowo na akrylamid o stężeniu przekraczającym 0,3 mg/m³ istotnie częściej występowało drętwienie dłoni i stóp niż w grupie pracowników narażonych na akrylamid o stężeniu poniżej 0,3 mg/m³. W celu ustalenia wartości NDS akrylamidu z wartości NOAEL 0,1 mg/m³ przyjęto jeden współczynnik niepewności związany z różnicami wrażliwości osobniczej u ludzi. Ilościowa ekstrapolacja wyników badań działania rakotwórczego związku u zwierząt na ludzi jest praktycznie niemożliwa, gdyż na powstawanie nowotworów obserwowanych u szczurów istotny wpływ mają czynniki specyficzne dla tego gatunku. Obliczona wartość NDS akrylamidu wynosi 0,05 mg/m³. Dla państw członkowskich UE istotne znaczenie mają wartości wiążące BOELV, a dla akrylamidu Komitet Doradczy ds. Bezpieczeństwa i Zdrowia w Miejscu Pracy (ACSH) przyjął w 2012 r. propozycję wartości BOELV w zakresie stężeń 0,07 ÷ 0,1 mg/m³. W Niemczech dla ryzyka akceptowanego 4-10-4 zaproponowano wartość dopuszczalną dla akrylamidu na poziomie 0,07 mg/m³. Biorąc pod uwagę powyższe ustalenia, zaproponowano przyjęcie stężenia 0,07 mg/m³ za wartość NDS akrylamidu. Ze względu na wchłanianie akrylamidu przez skórę związek oznakowano literami “Sk”. W badaniach pracowników narażonych na akrylamid stwierdzono wyraźną zależność między poziomem adduktów akrylamidu z hemoglobiną (N-(2-karbamoiloetylo)-waliny, AA-Hb) a występowaniem objawów ze strony obwodowego układu nerwowego. Dla objawów drętwienia/mrowienia stóp lub nóg (najwcześniej występujących) ustalono wartość NOAEL na poziomie 0,51 nmol AA-Hb/g globiny. Wartość ta odpowiada stężeniu akrylamidu w powietrzu wynoszącemu około 0,1 mg/m³. Jest to obowiązująca wartości NDS dla akrylamidu w Polsce. Do wyznaczenia wartości dopuszczalnego stężenia w materiale biologicznym dla akrylamidu we krwi przyjęto stężenia adduktów akrylamidu z hemoglobiną. W Niemczech przyjęto dwie wartości: BLW (biologischer leitwert – dopuszczalna wartość biologiczna) na poziomie 550 pmol AA-Val/g globiny oraz BAR (biologischer arbeitsstoff-referenzwert – biologiczna wartość referencyjna) na poziomie 50 pmol AA-Val/g globiny. W SCOEL ustalono wartość wyjściową BGV dla niepalącej populacji generalnej na poziomie 80 pmol AA-Val/g globiny. Żadna z tych wartości nie była porównywana z wartościami dopuszczalnych stężeń akrylamidu w powietrzu na stanowiskach pracy, których zarówno w SCOEL, jak i w Niemczech dla akrylamidu nie ustalono.Ze względu na dużą zmienność stężeń adduktów akrylamidu z hemoglobiną w populacji nienarażonej zawodowo na akrylamid, a także fakt, że pomiar adduktów z hemoglobiną jest metodą inwazyjną, wymagającą ponadto wyspecjalizowanej aparatury, zrezygnowano z ustalenia wartości dopuszczalnego stężenia w materiale biologicznym (DSB) dla akrylamidu.
Acrylamide (AA) is a chemical compound that occurs at room temperature in the form of colorless crystals or flakes. It is not found in the natural environment, but it can be produced in thermal food processes (frying, baking). It is also present in cigarette smoke. Acrylamide is categorized as a toxic substance that poses substantial health risk after long-term exposure via inhalation, ingestion or skin contact. It is a category 2 (IB) mutagen and category 2 (IB) carcinogen. AA is known to induce adverse effects on reproduction, eye irritation and allergic skin reactions. Acrylamide is produced in multitonnage quantities. It is mostly used to synthesize polyacrylamides applied in wastewater treatment, manufacturing paper, processing ore, manufacturing vinyl polymers; it is also used as a grouting agent in constructing dams and tunnels. Polyacrylamide gel is utilized in the process of electrophoresis (PAGE) commonly used in numerous laboratories.Occupational exposure to acrylamide may occur during the production, processing and distribution of this compound and also during its application in construction and assembly works (e.g., construction of tunnels, sewer grouting work). In Poland occupational exposure to acrylamide is observed in chemical and pharmaceutical plants as well as in laboratories of research institutes and tertiary education schools. Over 2000 workers (mostly women) were exposed to this compound in the years 2005-2010 (2525 workers in 2010). According to the data produced by the Chief Sanitary Inspectorate in 2011 and 2012 there were no workers exposed to acrylamide at levels exceeding maximum allowable concentration (MAC) in the air, namely over 0.01 mg/m3. Acrylamide is found to exert neurotoxic effects. Clinical symptoms of acute and chronic poisoning are similar in humans, and symptoms of peripheral neuropathy, such as loss of sensation, paresthesia (numbness/ tingling in hands and feet), reduced muscle tone and diminished tendon reflexes are most common. In addition, hand tremors and unsteady gait, diminished sensitivity to light and inability to distinguish colors can be ob-served. Peripheral neuropathy symptoms were significantly more frequent in workers exposed to A A concentrations exceeding 0.3 mg/m3. Based on the biological monitoring (acrylamide adducts with hemoglobin, AA-Hb) of AA-exposed w’orkers no-observed adverse effect level (NOAEL) for numbness/tingling in hands/ feet has been set at 0.51 nmol AA-Hb/g globin. This value corresponds to the air AA concentration of 0.1 mg/m3. In w'orkers exposed to this compound dermatitis manifested by skin peeling, mostly in the palm, is also observed. The results of animal studies on acute AA toxicity have revealed symptoms of neurotoxicity, regardless of the exposure route. In the available literature there is no information about long-term inhalation studies on animals. Subchronic and chronic studies (after intraperitoneal and ingestion exposure) showed mainly neurotoxic effect of this compound. Clinical symptoms of animal AA exposure were manifested by incoordination, unsteady gait and diminished strength of hind limbs leading to paralysis. Histopathological examinations of animals most frequently showed degenerated axons and Schwann cells in the spinal cord and peripheral nerves. The NOAEL value for chronic neurotoxicity in rats has been set at 0.5 mg/kg b.w./day. Acrylamide induced male reproductive pathology (degeneration of the germinal epithelium in testes and seminiferous tubules, exfoliation of germ cells in the epididymis and atrophy of testes). Standard bacteria testing show'ed lack of AA ability to induce point mutations. The in vitro study of gene mutations on mammal cells yielded controversial results. Some researchers suppose that the AA activity’ may be associated with the clastogenic effect (a broken chromosome, which may lead to chromosome reorganization due to incorrect coupling of its fragments into a new configuration). Acryla- rnide induced chromosome aberrations, polyploidy and spindle disorders, which indicates its aneuploidal effect (the incorrect number of chromosomes in the cell). Acrylamide was responsible for DNA damage, unscheduled DNA synthesis, production of DNA adducts and induction of sister chromatid exchange. In vivo studies yielded positive results for chromosome aberration, production of micronuclei and aneu- ploidy in bone marrow, which suggests that acrylamide is a mutagen characterized by direct action, however, it is most likely that it exerts the clastogenic effect, but not gene mutations. Acrylamide showed the mutagenic effect in male reproductive cells. Positive results wrere obtained for such effects as chromosome aberra-tions, production of micronuclei, sister chromatid exchange, unscheduled DNA synthesis, dominant lethal mutations and hereditary trans-locations. It is likely that metabolite glycidam- ide, which exerts mutagenic and genotoxic effects in both in vivo and in vitro studies, is re-sponsible for the mutagenic effect of acrylamide. Acrylamide was found to show a carcinogenic effect in rats and mice. Animal chronic studies revealed an increased incidence of cancers of thyroid, testes, mammary7 glands, pancreas, heart, oral cavity and skin and maybe also of the central nervous system (CNS) in rats as well as cancers of the Harderian gland, lungs, mammary glands, ovaries and foreestomach in mice. Glicydamide, AA metabolite, showed a similar effect. Epidemiological studies of people occupationally and environmentally (diet) exposed to acrylamide have not provided explicit evidence of the relationship between AA exposure and cancer risk. Acrylamide has been classified into group 2A (the agent probably carcinogenic to humans) by the International Agency for Research on Cancer and to group B (genotoxic carcinogen, for which the existence of a threshold cannot be sufficiently supported at present) by the Scientific Committee on Occupational Exposure Limit (SCOEL). Animal studies have evidenced an adverse effect of acrylamide on male reproduction/fertility, including a reduced number of sperm cells, morphological changes in sperm, altered sexual behavior, dominant lethal mutations. An increased fetal resorption and decreased litter size (resulting from lethal mutations) wrere observed in the progeny of males exposed to acrylamide. No effect on re-production was found in females. In the studies of developmental toxicity the majority of symptoms were observed after administration of AA doses responsible for inducing maternal toxicity. Acrylamide is well absorbed via inhalation and ingestion (up to 98% in rats and up to 44% in mice), less absorbed through the skin; specifically bound to red blood cells and spermatids and permeats through the placental barrier. Acrylamide is rapidly metabolized through conjuga¬tion to glutathione or CYP2El-mediated oxidation. The latter metabolic pathway leads to the production of glycidamide (GA), an epoxy derivative. Both acrylamide and GA can bind to hemoglobin and/or DNA. Acrylamide and its metabolites are excreted in the urine. In humans 50% of an orally administered dose w7as excreted in the urine in 24 h. Excretion half-time is esti-mated at approximately 3 h. Hemoglobin ad¬ducts of acrylamide, glycidamide and urinary metabolites can serve as biomarkers of acrylamide exposure. The neurotoxic AA effect on humans has been adopted as the basis for the proposed MAC value of this compound. In workers occupationally exposed to acrylamide at the concentration exceeding 0.3 mg/m3 numbness in palms and feet was observed more frequently than in those exposed to lower concentrations (below 0.3 mg/m3). To establish a MAC value of acrylamide from the value of NO- AEL 0.1 mg/m3, one uncertainty coefficient, related to individual differences in human sensitivity, has been adopted. The qualitative extrapolation of results obtained from carcinogenicity studies in laboratory7 animals to humans is practically impossible since the development of cancers observed in rats is significantly influenced by species-specific factors. The calculated MAC value for acrylamide is 0.05 mg/m3. It should be stressed that in the European Union the binding occupational exposure level value (BOELV) is most important. In 2012 the Advisor} Committee for Safety and Health at Work (ACSH) accepted a proposal on BOELV for acrylamide concentration within the range of 0.07 - 0.1 mg/m3. Also in Germany MAC for acrylamide was proposed at 0.07 for acceptable risk 4 - 1CH. Bearing in mind the aforesaid stipulations MAC of 0.07 mg/m3 for acrylamide has finally been proposed. On account of acrylamide ab-sorption through the skin the standard value for the compound is labeled "Sk". Studies of w7orkers occupationally exposed to acrylamide showed explicitly a relationship between the level of acrylamide adducts with hemoglobin (N-(2- -carbamoylethyl)-valine, AA-Hb) and the occurrence of symptoms in the peripheral nervous system. For numbness/tingling in feet or legs (the most commonly observed symptoms) the NOAEL value has been set at 0.51 nmol AA-Hb/g glo- bin. This value corresponds to AA concentration in the air of 0.1 mg/m3. This is a binding MAC value for acrylamide in Poland. Concentrations of acrylamide adducts with hemoglobin have been adopted to estimate admissible value in the biological material for acrylamide in blood. In Germany two values have been adopted, BLW (biologischer leitwert, biological limit value) of 550 pmol AA-Val/g globin and BAR (biologischer arbeitsstoff-referenzetwert, biological reference value) of 50 pmol AA-Val/g globin. SCOEL adopted an initial BGV (biological guidance value) for the non-smoking general population, which was set at 80 pmol AA-Val/g globin. None of these values was comparable with MAC values for acrylamide in workplace air; neither SCOEL nor Germany established such values. In view of great variations in the concentration of acrylamide adducts with hemoglobin in the population non-occupationally exposed to acrylamide as well as the fact measuring hemoglobin adducts involves an invasive procedure that requires highly specialized equipment, the establishment of BEI for acrylamide has been abandoned.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2014, 2 (80); 5-71
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Mangan i jego związki nieorganiczne – w przeliczeniu na Mn
Autorzy:
Starek, A.
Powiązania:
https://bibliotekanauki.pl/articles/137231.pdf
Data publikacji:
2012
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
mangan
narażenie zawodowe
toksyczność
NDS
manganese
occupational exposure
toxicity
MAC
Opis:
Mangan (Mn) jest metalem przejściowym, który występuje na: 0, II, III, IV, VI i VII stopniu utlenienia. Metal ten jest stosowany do produkcji stopów metali żelaznych i nieżelaznych, a jego związki mają wszechstronne zastosowanie. Narażenie zawodowe na mangan występuje: w górnictwie rud manganu, przy jego produkcji i jego stopów, podczas prac spawalniczych oraz podczas otrzymywania i stosowania jego związków. Wielkość narażania zawodowego na mangan na ogół nie przekracza 1 mg/m3 (frakcja wdychana pył całkowity) oraz 0,1 mg/m3 (frakcja respirabilna). Według danych Instytutu Medycyny Pracy w Łodzi z 1994 r. w Polsce było 3505 osób narażonych zawodowo na mangan o stężeniach przekraczających wartość najwyższego dopuszczalnego stężenia (NDS) wynoszącą 0,3 mg/m3, natomiast wg danych Głównej Inspekcji Sanitarnej z 2007 r. na mangan i jego związki nieorganiczne (w przeliczeniu na Mn) było narażonych 1011 pracowników. W przewlekłym zatruciu manganem u ludzi przeważają zaburzenia ze strony układu nerwowego i oddechowego. Po stosunkowo małych wielkościach narażenia zawodowego u pracowników obserwowano subkliniczne zmiany neurobehawioralne. U zwierząt laboratoryjnych w warunkach narażenia powtarzanego na mangan obserwowano zmiany w metabolizmie neuroprzekaźników oraz zaburzenia neuroczynnościowe. Mutagenne działanie manganu było słabo zaznaczone. Mangan nnie jest klasyfikowany jako czynnik rakotwórczy. Brak jest również jednoznacznych dowodów na jego wpływ na rozrodczość. Wydaje się, że ze względu na możliwą kumulację skutków działania manganu na ośrodkowy układ nerwowy (OUN) bardziej wartościowe do ustalenia wartości NDS są wyniki badań dotyczące narażenia skumulowanego. Na podstawie wyników pracy Roelsa i in. wykazano, że skumulowane narażenie na mangan o stężeniu 3575 mg/m3 razy lata pracy w narażeniu (frakcja wdychalna) i stężenie 0,73 mg/m3 razy lata pracy w narażeniu (frakcja respirabilna) powodowało występowanie wczesnych objawów działania na OUN u 5% populacji. Jeśli przyjmiemy 20 lat pracy w narażeniu na mangan, to stężenia manganu w powietrzu środowiska pracy wyniosą odpowiednio 0,178 (frakcja wdychalna) oraz 0,036 mg/m3 (frakcja respirabilna). W badaniu Myersa i in. w grupie 489 górników narażonych na mangan w postaci pyłu całkowitego o stężeniu 0,21 mg/m3 (średnia arytmetyczna) przez średni okres 10,8 lat pracy nie obserwowano subklinicznych zaburzeń neurobehawioralnych związanych z narażeniem. Na podstawie wyników wymienionych prac wykazano, że można zaproponować przyjęcie stężenia 0,2 mg/m3 za dopuszczalną wartość stężenie manganu zawartego we wdychalnej frakcji pyłu. Ponieważ mangan we frakcji respirabilnej stanowi około 25% manganu obecnego w pyle całkowitym, dlatego proponuje się ustalenie wartości NDS dla tej frakcji jako ¼ obliczonej wcześniej wartości NDS, tj. 0,05 mg/m3. Proponuje się przyjęcie wartości NDS dla manganu na poziomach 0,2 mg/m3 i 0,05 mg/m3 odpowiednio dla frakcji wdychalnej i frakcji respirabilnej. Proponowane wartości powinny chronić pracowników przed subklinicznymi zaburzeniami neurobehawioralnymi wywołanymi narażeniem na mangan. Nie znaleziono merytorycznych podstaw do ustalenia wartości najwyższego dopuszczalnego stężenia chwilowego (NDSCh) manganu oraz jego dopuszczalnego stężenia w materiale biologicznym (DSB).
Manganese (Mn) is a transition metal, which occurs in several oxidation states (0, II, III, IV, VI and VII) and forms a range of inorganic compounds. Manganese is a very hard, brittle metal, which is used in the production of ferrous and non-ferrous metal alloys, including those essential to steel making. This metal increases the strength of steel alloys. Iron and steel production accounts for 85 ÷ 95% of the manganese market. Its compounds have comprehensive applications. In industrial conditions, there is occupational exposure especially in mining, metal smelting, steel production, battery manufacture, welding, agricultural production and use, and in pigment, paint and glass making. Workers can be exposed to dust and fumes of manganese-containing compounds in a range of particle sizes where the ratio of inhalable to respirable fractions varies within and between industries. Manganese is an essential element; it is involved in bone formation and amino acid, carbohydrate and cholesterol metabolism. It is a component of several enzymes and it activates others. It is estimated that in Poland in 1994 about 3500 workers were exposed to manganese at levels above the maximum admissible concentration (MAC) of 0.3 mg/m3. However, according to data provided by the Chief Sanitary Inspectorate, about 1000 persons were exposed to manganese and its inorganic compounds in 2007. In persons chronically exposed to manganese and its compounds via inhalation disorders of both the central nervous and the respiratory system predominate. Subclinical neurobehavioral changes have been observed in workers occupationally exposed to relatively low levels of this metal. There have been changes in neurotransmitters metabolism and neurofunctional disorders in laboratory animals repeatedly exposed to manganese. The mutagenicity of this metal was weakly marked. Manganese is not classified as a chemical carcinogen. On the basis of the results of epidemiological examinations the MAC values for manganese and its inorganic compounds were established at 0.2 mg/m3 and 0.05 mg/m3 for inhalable and respirable fractions, respectively. No STEL (15 mins) and BEI values have been proposed.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2012, 1 (71); 27-58
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Benzotiazol . Dokumentacja proponowanych wartości dopuszczalnych wielkości narażenia zawodowego
Benzothiazole
Autorzy:
Zapór, L.
Powiązania:
https://bibliotekanauki.pl/articles/137305.pdf
Data publikacji:
2005
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
benzotiazol
toksyczność układowa
wartości normatywne
benzothiazole
systemic toxicity
exposure limits
Opis:
Benzotiazol jest cieczą o nieprzyjemnym, podobnym do chinoliny zapachu. Jest stosowany jako związek pośredni w syntezie organicznej (do syntezy barwników cyjanowych), środek poprawiający smak w produktach żywnościowych i środek przeciwgrzybiczy przy impregnacji obuwia. Benzotiazol występuje także jako związek naturalny. Narażenie zawodowe na benzotiazol drogą inhalacyjną i dermalną dotyczy głównie osób zatrudnionych przy jego produkcji oraz w przemyśle gumowym (np.: przy procesie wulkanizacji gumy, utwardzaniu kauczuku, w przemyśle opon samochodowych), a także osób zatrudnionych w przedsiębiorstwach drogowych (przy wylewaniu mas bitumicznych). Wyniki badań toksyczności ostrej pozwalają na sklasyfikowanie benzotiazolu jako związku szkodliwego, niezależnie od drogi podania. Wartości LD50 po podaniu per os szczurom ustalono na poziomie 177 - 479 mg/kg m.c., a po naniesieniu na skórę szczura na poziomie 933 - 1233 mg/kg m.c. Wyznaczona wartość LC50 po narażeniu inhalacyjnym szczurów wynosiła około 5000 mg/m3 . W dostępnym piśmiennictwie nie znaleziono informacji o zatruciach ostrych i przewlekłych benzotiazolem u ludzi. U myszy, szczurów i królików wykazano, że benzotiazol może działać szkodliwie na układ nerwowy i wątrobę. U kotów stwierdzono słabe, odwracalne działanie methemoglobinotwórcze. Związek może działać drażniąco na błony śluzowe oczu i górnych dróg oddechowych oraz na skórę. Benzotiazol nie wykazywał działania mutagennego w krótkoterminowych testach mutagenności, nie został również zaliczony do czynników rakotwórczych w żadnym systemie klasyfikacji (IARC, UE, EPA i ACGIH). W dostępnym piśmiennictwie nie znaleziono danych dotyczących działania teratogennego benzotiazolu oraz jego wpływu na rozrodczość. Na podstawie wyników badań na zwierzętach można przypuszczać, że benzotiazol wykazuje działanie embriotoksyczne. W Polsce i na świecie nie ustalono dotąd wartości normatywów higienicznych dla benzotiazolu. Wartość NDS benzotiazolu wynoszącą 20 mg/m3 obliczono z wartości LOAEL wyznaczonej w badaniach na szczurach, którą przeliczono na równoważne dla człowieka stężenie związku w powietrzu, a następnie podzielono przez odpowiednie współczynniki niepewności. Opierając się na wartościach medialnych dawek śmiertelnych po podaniu substancji na skórę królika i szczura, zaproponowano oznakowanie benzotiazolu literami „Sk” oznaczającymi, że substancja wchłania się przez skórę. Nie ma podstaw do ustalania wartości najwyższych dopuszczalnych stężeń chwilowych (NDSCh) i dopuszczalnych stężeń biologicznych (DSB) benzonatiolu.
Benzothiazole is a yellow liquid with an unpleasant odor similar to quinoline. Benzothiazole is used as a chemical intermediate in organic synthesis. It is a precursor of rubber accelerators and a component of cyanine dyes. It is also used as a flavoring substance in foods and as an antimicrobial agent. Occupational exposure to benzothiazole through inhalation or dermal contact occurs mostly at rubber processing facilities and during asphalt paving. Benzothiazole is harmful substance in laboratory animals in acute toxicity testing. It exerts systemic action on the central nervous system and the liver. In the available literature no data on the toxicity in humans, or genotoxicity, carcinogenicity, fetotoxicity, and teratogenicity of benzothiazole in laboratory animals have been found. In setting exposure limits, the results of an acute toxicity testing were considered. Based on the LOAEL value obtained in an experimental study (135 mg/kg) and the relevant uncertainty factors, a MAC (TWA) value has been calculated at 20 mg/m3 . With regard to systemic effects of benzothiazole no STEL value has been established. Because benzothiazole has been shown to penetrate the skin in amounts sufficient to induce systemic toxicity, a skin notation (Sk) is considered appropriate. notation (Sk) is considered appropriate.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2005, 3 (45); 37-48
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Styren
Autorzy:
Starek, A.
Powiązania:
https://bibliotekanauki.pl/articles/137477.pdf
Data publikacji:
2012
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
styren
narażenie zawodowe
toksyczność
NDS
styrene
occupational exposure
toxicity
MAC
Opis:
Styren łatwopalna ciecz o przenikliwym i słodkim zapachu jest substancją wielkotonażową wykorzystywaną do produkcji: żywicy butadienowo styrenowej i żywic kopolimerowych z akrylonitrylem, tworzyw sztucznych wzmocnionych włóknem szklanym stosowanych w szkutnictwie oraz powłok ochronnych. Styren stosuje się także jako rozpuszczalnik i półprodukt chemiczny. Największe zawodowe narażenie na styren występuje podczas prac natryskowych oraz podczas produkcji: łodzi, pojazdów i kontenerów. Według danych Głównej Inspekcji Sanitarnej w 2007 r. w Polsce były zatrudnione 323 osoby narażone na styren o stężeniu powyżej 50 mg/m3, czyli wartości najwyższego dopuszczalnego stężenia (NDS). Osoby te pracowały przy produkcji: wyrobów gumowych i wyrobów z tworzyw sztucznych (186 osób), pozostałego sprzętu transportowego (55 osób), wyrobów niemetalicznych (51 osób) i sprzętu transportowego, a także przy produkcji niesklasyfikowanej gdzie indziej oraz w budownictwie (31 osób). W 2010 r. liczba osób zawodowo narażonych na styren powyżej wartości NDS wzrosła do 480, w tym: 203 osoby pracowały przy produkcji wyrobów gumowych i tworzyw sztucznych, 115 osób przy produkcji pojazdów samochodowych, 143 osoby przy produkcji pozostałego sprzętu transportowego, 5 osób było zatrudnionych przy produkcji włókien tekstylnych, 1 osoba przy produkcji chemikaliów, 8 osób przy produkcji gotowych wyrobów metalowych, 3 osoby w trakcie wykonywania specjalistycznych robót budowlanych oraz 2 osoby zatrudnione w handlu hurtowym (GIS 2010). W latach 2001-2010 w związku z narażeniem na styren zarejestrowano sześć przypadków chorób zawodowych: dwa przypadki zatrucia, trzy – choroby skóry oraz jeden przypadek przewlekłego zanikowego alergicznego nieżytu nosa, gardła lub krtani wywołany działaniem drażniącym styrenu. Działanie toksyczne styrenu u ludzi manifestuje się podrażnieniem: oczu, śluzówki nosa i gardła, a także zaburzeniami ze strony ośrodkowego układu nerwowego (OUN) w postaci zmian neurobehawioralnych oraz upośledzenia funkcji narządu wzroku i narządu słuchu. U pracowników przewlekle narażonych na styren opisano również zmiany: hematologiczne, czynnościowe wątroby, endokrynne i immunologiczne. Styren nie spełnia kryteriów klasyfikacji ustalonych dla toksyczności ostrej po podaniu drogą pokarmową, inhalacyjną lub dermalną w Unii Europejskiej. Styren wykazuje działanie genotoksyczne, wyrażone zmianami klastogennymi i aberracjami chromosomowymi w wyniku tworzenia adduktów z DNA przez jego tlenek. Według IARC nie ma wystarczającego dowodu na rakotwórcze działanie styrenu na ludzi, natomiast istnieje ograniczony dowód takiego działania u zwierząt (grupa 2B). Nie wykazano również embriotoksycznego, fetotoksycznego i teratogennego działania styrenu, natomiast istnieje możliwość szkodliwego działania styrenu na gonady męskie i na rozwój potomstwa w okresie postnatalnym. Podstawą do obliczenia wartości NDS dla styrenu były wyniki badań epidemiologicznych. Za skutki krytyczne przyjęto drażniące działanie tego związku oraz zaburzenia ze strony OUN. Zaproponowano pozostawienie obowiązującej w Polsce wartości NDS styrenu na poziomie 50 mg/m3 oraz zmniejszenie wartości najwyższego dopuszczalnego stężenia chwilowego (NDSCh) do 100 mg/m3. Ponadto zaproponowano przyjęcie wartości dopuszczalnego stężenia w materiale biologicznym (DSB) dla sumy stężeń kwasu migdałowego (MA) i kwasu fenyloglioksalowego (PGA) w moczu pobranym pod koniec zmiany roboczej na poziomie 235 mg/g kreatyniny. Normatyw oznakowano literą „I” informującą, że jest to substancja o działaniu drażniącym.
Styrene monomer is a colorless to yellow oily liquid with a sweet, sharp odor at concentrations on the order of 426 mg/m3. Styrene has been produced by catalytic dehydrogenation of ethyl benzene. This compound is manufactured on a large scale. It has been widely used in the manufacture of polystyrene plastics, protective coatings, styrenated polyesters, copolymer resins with acrylonitrile and butadiene, and as a chemical intermediate. In Poland in 2010 the number of workers exposed to styrene at concentration above MAC value (50 mg/m3) was 480. In 2001 to 2010 six cases of professional diseases caused by styrene was noted. Results of animal studies revealed that styrene is a chemical of relatively low toxicity. In humans occupationally exposed to styrene an irritating effect to the eyes, both nose and throat mucosa, and central nervous system (CNS) disturbances (neurobehavioral, impairment of colour vision and hearing) were observed. Also, this chemical was caused hematological, hepatotoxic, andocrine, and immunological changes. Styrene exerts genotoxic effects causing an increase of single-strand breaks of DNA and chromosomal aberrations. There is inadequate evidence in humans and limited evidence in experimental animals for the carcinogenicity of styrene. The International Agency for Research on Cancer (IARC) has classified styrene to Group 2B. Styrene has shown neither embryotoxic, fetotoxic, and teratogenec effects. The recommended maximum admissible concentration (MAC) for styrene of 50 mg/m3 is based on the irritating effect and CNS disturbances in workers professionally exposed to this chemical. STEL value at 100 mg/m3, and “I” (irritating) notation has been proposed. Moreover, BEI value for sum of mandelic acid and phenylglyoxylic acid at level of 235 mg/g creatinine is recommended.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2012, 3 (73); 101-135
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Nitroetan : dokumentacja proponowanych dopuszczalnych wielkości narażenia zawodowego
Nitroethane : documentation of proposed values of occupational exposure limits (OELs)
Autorzy:
Sapota, A.
Kilanowicz, A.
Skrzypińska-Gawrysiak, M.
Powiązania:
https://bibliotekanauki.pl/articles/137842.pdf
Data publikacji:
2017
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
nitroetan
toksyczność
narażenie zawodowe
NDS
nitroethane
toxicity
occupational exposure
MAC
Opis:
Nitroetan jest bezbarwną oleistą cieczą o łagodnym, owocowym zapachu. Jest stosowany jako propelent (materiał pędny np. w silnikach rakietowych), a ponadto jako rozpuszczalnik: estrów celulozy, żywic (winylowych i alkidowych), wosków oraz w syntezie chemicznej. Zawodowe narażenie na nitroetan może występować w procesie produkcji i konfekcjonowania tego związku. Nie ma danych dotyczących stężeń nitroetanu w powietrzu w warunkach narażenia zawodowego. W latach 2010-2015 nie zanotowano w przemyśle polskim narażenia pracowników na nitroetan o stężeniach przekraczających obowiązującą wartość NDS – 75 mg/m³ (taka wartość NDS obowiązuje od 2010 r.). Nitroetan może wchłaniać się w drogach oddechowych i z przewodu pokarmowego. Opisane przypadki ostrych zatruć nitroetanem dotyczyły dzieci poniżej 3. roku życia, które przypadkowo wypiły zmywacz do sztucznych paznokci, zawierający czysty nitroetan. Po kilku godzinach od spożycia u dzieci wystąpiła sinica, czasem wymioty. Poziom methemoglobiny osiągał kilkadziesiąt procent (około 40 ÷ 50%). Nie ma danych ani o zatruciach przewlekłych ludzi nitroetanem, ani danych epidemiologicznych. Na podstawie wyników toksyczności ostrej zaklasyfikowano nitroetan do związków szkodliwych. Nie wykazano działania drażniącego związku na oczy i skórę ani jego działania uczulającego. Na podstawie wyników badań podprzewlekłych (4 i 90 dni) i przewlekłych (2 lata), którym poddano szczury i myszy narażane na nitroetan w zakresie stężeń 310 ÷ 12 400 mg/m³, stwierdzono działanie methemoglobinotwórcze związku oraz niewielkiego stopnia uszkodzenia: wątroby, śledziony, ślinianek i małżowin nosowych. Nitroetan nie wykazywał działania mutagennego, rakotwórczego oraz nie wpływał na rozrodczość. Najmniejsze stężenie nitroetanu, podczas którego w badaniach przewlekłych prowadzonych na szczurach stwierdzano skutki działania tego związku (zmniejszenie masy ciała i subtelne zmiany w parametrach biochemicznych u samic), wynosiło 525 mg/m3 (LOAEL). Wychodząc z wartości LOAEL oraz stosując odpowiednie współczynniki niepewności, zaproponowano przyjęcie wartości najwyższego dopuszczalnego stężenia (NDS) nitroetanu równej 62 mg/m³. Wartość najwyższego dopuszczalnego stężenia chwilowego (NDSCh) nitroetanu zaproponowano, zgodnie z przyjętą metodologią ustalania wartości chwilowej dla związków o działaniu drażniącym, na poziomie trzykrotnej wartości NDS, tj. 186 mg/m³, co zapobiegnie skutkom podrażnienia sensorycznego u ludzi. Ze względu na działanie methemoglobinotwórcze nitroetanu, zaproponowano także przyjęcie wartości dopuszczalnego stężenia w materiale biologicznym (DSB) równej 2% methemoglobiny (MetHb) we krwi, jak dla wszystkich substancji methemoglobinotwórczych. W Scientific Committee on Occupational Exposure Limits (SCOEL) wartość dopuszczalnego poziomu narażenia zawodowego dla nitroetanu TWA (8 h) zaproponowano na poziomie 62 mg/m³ (20 ppm), wartość krótkoterminową STEL (15 min) na poziomie 312 mg/m³ (100 ppm) oraz notację „skóra”. Wartości OEL i STEL zaproponowane w SCOEL dla nitroetanu podlegały konsultacjom publicznym, prze-prowadzonym w 2011 r. przez punkty kontaktowe, podczas których Polska nie zgłosiła zastrzeżeń do tych propozycji. Wartości zaproponowane dla nitroetanu przez SCOEL zostały przyjęte przez Komitet Doradczy ds. Bezpieczeństwa i Ochrony Zdrowia w Miejscu Pracy UE (ACSH) i umieszczone w projekcie dyrektywy ustalającej IV wykaz wskaźnikowych dopuszczalnych wartości narażenia zawodowego.
Nitroethane is a colorless oily liquid with a mild fruity odor. It is used mainly as a propellant (e.g., fuel for rockets), and as a solvent or dissolvent agent for cellulose esters, resins (vinyl and alkyd) and waxes, and also in chemical synthesis. Occupational exposure to nitroethane may occur during the process of its production and processing. There are no data on air concentrations of nitroethane in occupational exposure. In 2010–2015, workers in Poland were not exposed to nitroethane concentrations exceeding the maximum allowable value – 75 mg/m3 (the limit value valid since 2010). Nitroethane can be absorbed into the body via inhalation of its vapors or by ingestion. The discussed cases of nitroethane acute poisoning caused by an accidental ingestion of artificial fingernail remover containing pure nitroethane concerned children under three years. Few hours after ingestion, cyanosis and sporadic vomiting were observed in children. The methemoglobin level reached 40÷50%. Neither data on chronic nitroethane poisoning in humans nor data obtained from epidemiological studies are available. On the basis of the results of acute toxicity studies nitroethane has been categorized in the group of hazardous compounds. However, eye and dermal irritation or allergic effects have not been evidenced. The studies of sub-chronic (4 and 90 days) and chronic (2 years) exposure to nitroethane performed on rats and mice (concentration range 310 ÷ 12 400 mg/m3 ) revealed the methemoglobinogenic effect of this compound and a minor damage to liver, spleen, salivary gland and nasal turbinates. Niroethane has shown neither mutagenic nor carcinogenic effects. Its influence on fertility has not been evidenced either. After chronic exposure (2 years) of rats to nitroethane at concentration of 525 mg/m3 (the lowest observed adverse effect level – LOAEL), a slight change in a body mass of exposed female animals and subtle changes in biochemical parameters were observed, but there were no anomalies in hematological and histopathological examinations. The value of 62 mg/m3 has been suggested to be adopted as the MAC value for nitroethane after applying the LOAEL value of 525 mg/m3 and relevant coefficients of uncertainty. The STEL value for nitroethane was proposed according to the methodology for determining short term exposure level value for irritating substances as three times MAC value (186 mg/m3) to prevent the effects of sensory irritations in humans. Because of its methemoglobinogenic effect, 2% Met-Hb has been suggested to be adopted as the value of biological exposure index (BEI), like the value already adopted for all methemoglobinogenic substances. The Scientific Committee on Occupational Exposure Limits (SCOEL) proposed the timeweighted average (TWA) for nitroethane (8 h) as 62 mg/m3 (20 ppm), short-term exposure limit (STEL, 15 min) as 312 mg/m3 (100 ppm) and “skin” notation. Proposed OEL and STEL values for nitroethane were subjected to public consultation, conducted in 2011 by contact points, during which Poland did not raise any objections to the proposals. The proposed values for nitroethane by SCOEL has been adopted by the Advisory Committee on Safety and Health at Work UE (ACSH) and included in the draft directive establishing the IV list of indicative occupational exposure limit values.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2017, 1 (91); 97-113
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Tetrachlorek węgla
Carbon tetrachloride
Autorzy:
Jakubowski, M.
Powiązania:
https://bibliotekanauki.pl/articles/137921.pdf
Data publikacji:
2011
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
tetrachlorek węgla
toksyczność
narażenie zawodowe
carbon tetrachloride
toxicity
occupational exxposure
Opis:
Tetrachlorek węgla (CCl4) jest przezroczystą, bezbarwną, niepalną cieczą o charakterystycznym zapachu zbliżonym do zapachu eteru. W przeszłości tetrachlorek węgla powszechnie stosowano jako rozpuszczalnik do prania na sucho. Obecnie został on całkowicie zastąpiony przez mniej toksyczne rozpuszczalniki. Jest stosowany głównie: do produkcji fluorowodorów stosowanych jako gaz napędowy w pojemnikach z aerozolami oraz pianek z tworzyw sztucznych, a także w gaśnicach. Zgodnie z danymi Instytutu Medycyny Pracy w Łodzi z 2001 r. w Polsce nie było osób narażonych na tetrachlorek węgla o stężeniach powyżej wartości najwyższego dopuszczalnego stężenia (NDS), czyli 20 mg/m3. Również w 2007 r. wg danych Głównej Inspekcji Sanitarnej przekroczeń wartości NDS tetrachlorku węgla w powietrzu na stanowiskach pracy nie było.
Carbon tetrachloride (CCl4) is a colorless, volatile and nonflammable liquid with a characteristic odor. In the past, carbon tetrachloride was widely used as a cleaning fluid in industry and dry cleaning establishments and for the production of chlorofluorocarbons used primarily in refrigerants. Because it is nonflammable, it was also used in fire extinguishers. In Poland, concentrations of CCl4 in the air, in industrial settings, were below the present MAC value of 20 mg/m3. The liver, kidney, and central nervous system are the primary targets of toxicity following acute oral exposure to CCl4. Also gastrointestinal irritation has been frequently noted following accidental ingestion of high doses in humans. In the case of chronic inhalation exposure, the liver appears to be the critical organ. Toxic effects of CCl4 in this organ are related to its biotransformation catalyzed by cytochrome P-450 dependent monooxygenase, specifically CYP2E1. Biotransformation of CCl4 yields trichloromethyl radicals and trichloromethylperoxy radicals which can bind to cellular macromolecules such as proteins and lipids. Central nervous system effects include headache, weakness, lethargy, and stupor. Neurological effects are generally observed at exposure levels higher than the threshold for hepatic toxicity. 150
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2011, 4 (70); 119-150
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Cytotoxicity of Resorcinol Under Short- and Long-Term Exposure in Vitro
Autorzy:
Skowroń, J.
Zapór, L.
Powiązania:
https://bibliotekanauki.pl/articles/90515.pdf
Data publikacji:
2004
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
resorcinol
short-term toxicity
long-term toxicity
bioreactor
in vitro methods
rezorcynol
toksyczność chroniczna
działanie toksyczne
substancje toksyczne
substancje niebezpieczne
ekspozycja długotrwała
ekspozycja chwilowa
zatrucia
Opis:
Cytotoxicity of resorcinol to 3T3 fibroblast in short- (3 hrs) and long-term (72 hrs or 6 weeks) exposure was investigated. The effects of resorcinol on cell viability (neutral red uptake, NRU assay), mitochondrial function (MTT assay) and total cell protein (Kenacid Blue assay) were estimated. As a model for long-term exposure an INTEGRA CL 6-WELL bioreactor was used. The concentrations of resorcinol producing 20, 50 and 80% inhibition of cell growth in the NRU test were lower than in the MTT test after 3 hrs of exposure. The use of an INTEGRA CL 6-WELL bioreactor allows continuous culturing and exposure to test chemical of cells for several weeks, but the strong adhesiveness of fibroblast and forming aggregates make it difficult to remove them from chambers. Resorcinol in concentration of 1 μ/cm³ did not decrease the viability of cells to 50% of control in long-term exposure in the bioreactor.
Źródło:
International Journal of Occupational Safety and Ergonomics; 2004, 10, 2; 147-156
1080-3548
Pojawia się w:
International Journal of Occupational Safety and Ergonomics
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies