Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "semilinear" wg kryterium: Temat


Wyświetlanie 1-5 z 5
Tytuł:
Existence and decay of finite energy solutions for semilinear dissipative wave equations in time-dependent domains
Autorzy:
Nakao, Mitsuhiro
Powiązania:
https://bibliotekanauki.pl/articles/1397374.pdf
Data publikacji:
2021
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
energy decay
global existence
semilinear wave equation
noncylindrical domains
Opis:
We consider the initial-boundary value problem for semilinear dissipative wave equations in noncylindrical domain $\cup_{0 \leq t \leq \infty} \Omega(t) \times \{t\} \subset \mathbb{R}^N \times \mathbb{R}$. We are interested in finite energy solution. We derive an exponential decay of the energy in the case Ω(t) is bounded in $\mathbb{R}^N$ and the estimate $\int_0^\infty E(t)dt \leq C(E(0), ||u(0)||) < \infty $ in the case Ω (t) is unbounded. Existence and uniqueness of finite energy solution are also proved.
Źródło:
Opuscula Mathematica; 2020, 40, 6; 725-736
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Existence and asymptotic behavior of positive solutions of a semilinear elliptic system in a bounded domain
Autorzy:
Chaieb, M.
Dhifli, A.
Zermani, S.
Powiązania:
https://bibliotekanauki.pl/articles/256009.pdf
Data publikacji:
2016
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
semilinear elliptic system
asymptotic behavior
Karamata class
sub-super solution
Opis:
Let Ω be a bounded domain in [formula] with a smooth boundary [formula]. We discuss in this paper the existence and the asymptotic behavior of positive solutions of the following semilinear elliptic system [formula] Here r, s ∈ R, α, β < 1 such that γ := (1 - α) (1 - β ) - rs > 0 and the functions [formula] are nonnegative and satisfy some appropriate conditions with reference to Karamata regular variation theory.
Źródło:
Opuscula Mathematica; 2016, 36, 3; 315-336
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A new composition theorem for sp-weighted pseudo almost periodic functions and applications to semilinear differential equations
Autorzy:
Zhao, Z.
Chang, Y.
N'Guerekata, G. M.
Powiązania:
https://bibliotekanauki.pl/articles/256044.pdf
Data publikacji:
2011
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
Sp-weighted pseudo almost periodic
weighted pseudo almost periodicity
semilinear differential equations
Opis:
In this paper, we establish a new composition theorem for Sp-weighted pseudo almost periodic functions under weaker conditions than the Lipschitz ones currently encountered in the literatures. We apply this new composition theorem along with the Schauder's fixed point theorem to obtain new existence theorems for weighted pseudo almost periodic mild solutions to a semilinear differential equation in a Banach space.
Źródło:
Opuscula Mathematica; 2011, 31, 3; 457-474
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Stability of solutions of infinite systems of nonlinear differential-functional equations of parabolic type
Autorzy:
Zabawa, T.S.
Powiązania:
https://bibliotekanauki.pl/articles/254967.pdf
Data publikacji:
2006
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
stability of solutions
infinite systems
parabolic equations
elliptic equations
semilinear differential-functional equations
monotone iteration method
Opis:
A parabolic initial boundary value problem and an associated elliptic Dirichlet problem for an infinite weakly coupled system of semilinear differential-functional equations are considered. It is shown that the solutions of the parabolic problem is asymptotically stable and the limit of the solution of the parabolic problem as t → ∞ is the solution of the associated elliptic problem. The result is based on the monotone methods.
Źródło:
Opuscula Mathematica; 2006, 26, 1; 173-183
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Monotone iterative methods for infinite systems of reaction-diffusion-convection equations with functional dependence
Autorzy:
Brzychczy, S.
Powiązania:
https://bibliotekanauki.pl/articles/255097.pdf
Data publikacji:
2005
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
infinite systems
reaction-diffusion-convection equations
semilinear parabolic differential-functional equations
Volterra functionals
monotone iterative methods
method of upper and lower solutions
Opis:
We consider the Fourier first initial-boundary value problem for an infinite system of semilinear parabolic differential-functional equations of reaction-diffusion-convection type of the form [formula] where [formula] in a bounded cylindrical domain (0, T] x G := D rcup Rm+1. The right-hand sides of the system are Volterra type functionals of the unknown function z. In the paper, we give methods of the construction of the monotone iterative sequences converging to the unique classical solution of the problem considered in partially ordered Banach spaces with various convergence rates of iterations. We also give remarks on monotone iterative methods in connection with numerical methods, remarks on methods for the construction of lower and upper solutions and remarks concerning the possibility of extending these methods to more general parabolic equations. All monotone iterative methods are based on differential inequalities and, in this paper, we use the theorem on weak partial differential-functional inequalities for infinite systems of parabolic equations, the comparison theorem and the maximum principle. A part of the paper is based on the results of our previous papers. These results generalize the results obtained by several authors in numerous papers for finite systems of semilinear parabolic differential equations to encompass the case of infinite systems of semilinear parabolic differential-functional equations. The monotone iterative schemes can be used for the computation of numerical solutions.
Źródło:
Opuscula Mathematica; 2005, 25, 1; 29-99
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-5 z 5

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies