Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "particle swarm optimization algorithm" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Bainite transformation time model optimization for Austempered Ductile Iron with the use of heuristic algorithms
Autorzy:
Olejarczyk-Wożeńska, Izabela
Opaliński, Andrzej
Mrzygłód, Barbara
Regulski, Krzysztof
Kurowski, Wojciech
Powiązania:
https://bibliotekanauki.pl/articles/29520068.pdf
Data publikacji:
2022
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
heuristic optimization
bainite
ADI
Particle Swarm Optimization
Evolutionary Optimization Algorithm
Opis:
The paper presents the application of heuristic optimization methods in identifying the parameters of a model for bainite transformation time in ADI (Austempered Ductile Iron). Two algorithms were selected for parameter optimization – Particle Swarm Optimization and Evolutionary Optimization Algorithm. The assumption of the optimization process was to obtain the smallest normalized mean square error (objective function) between the time calculated on the basis of the identified parameters and the time derived from the experiment. As part of the research, an analysis was also made in terms of the effectiveness of selected methods, and the best optimization strategies for the problem to be solved were selected on their basis.
Źródło:
Computer Methods in Materials Science; 2022, 22, 3; 125-136
2720-4081
2720-3948
Pojawia się w:
Computer Methods in Materials Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Modelling Microcystis Cell Density in a Mediterranean Shallow Lake of Northeast Algeria (Oubeira Lake), Using Evolutionary and Classic Programming
Autorzy:
Arif, Salah
Djellal, Adel
Djebbari, Nawel
Belhaoues, Saber
Touati, Hassen
Guellati, Fatma Zohra
Bensouilah, Mourad
Powiązania:
https://bibliotekanauki.pl/articles/2174666.pdf
Data publikacji:
2023
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
microcystis cell density
Multiple Linear Regression
Support Vector Machine
Particle Swarm Optimization
Genetic Algorithm
Bird Swarm Algorithm
Opis:
Caused by excess levels of nutrients and increased temperatures, freshwater cyanobacterial blooms have become a serious global issue. However, with the development of artificial intelligence and extreme learning machine methods, the forecasting of cyanobacteria blooms has become more feasible. We explored the use of multiple techniques, including both statistical [Multiple Regression Model (MLR) and Support Vector Machine (SVM)] and evolutionary [Particle Swarm Optimization (PSO), Genetic Algorithm (GA), and Bird Swarm Algorithm (BSA)], to approximate models for the prediction of Microcystis density. The data set was collected from Oubeira Lake, a natural shallow Mediterranean lake in the northeast of Algeria. From the correlation analysis of ten water variables monitored, six potential factors including temperature, ammonium, nitrate, and ortho-phosphate were selected. The performance indices showed; MLR and PSO provided the best results. PSO gave the best fitness but all techniques performed well. BSA had better fitness but was very slow across generations. PSO was faster than the other techniques and at generation 20 it passed BSA. GA passed BSA a little further, at generation 50. The major contributions of our work not only focus on the modelling process itself, but also take into consideration the main factors affecting Microcystis blooms, by incorporating them in all applied models.
Źródło:
Geomatics and Environmental Engineering; 2023, 17, 2; 31--68
1898-1135
Pojawia się w:
Geomatics and Environmental Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies