Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "paired domination" wg kryterium: Temat


Wyświetlanie 1-5 z 5
Tytuł:
The paired-domination and the upper paired-domination numbers of graphs
Autorzy:
Ulatowski, W.
Powiązania:
https://bibliotekanauki.pl/articles/255585.pdf
Data publikacji:
2015
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
paired-domination
paired-domination number
upper paired-domination number
Opis:
In this paper we continue the study of paired-domination in graphs. A paired-dominating set, abbreviated PDS, of a graph G with no isolated vertex is a dominating set of vertices whose induced subgraph has a perfect matching. The paired-domination number of G, denoted by γP(G), is the minimum cardinality of a PDS of G. The upper paired-domination number of G, denoted by ΓP(G), is the maximum cardinality of a minimal PDS of G. Let G be a connected graph of order n ≥ 3. Haynes and Slater in [Paired-domination in graphs, Networks 32 (1998), 199-206], showed that γ P(G) ≤ n— 1 and they determine the extremal graphs G achieving this bound. In this paper we obtain analogous results for ΓP(G). Dorbec, Henning and McCoy in [Upper total domination versus upper paired-domination, Questiones Mathematicae 30 (2007), 1-12] determine Γp(Pn), instead in this paper we determine Γp(Cn). Moreover, we describe some families of graphs G for which the equality γP(G) = ΓP(G) holds.
Źródło:
Opuscula Mathematica; 2015, 35, 1; 127-135
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
All graphs with paired-domination number two less than their order
Autorzy:
Ulatowski, W.
Powiązania:
https://bibliotekanauki.pl/articles/255220.pdf
Data publikacji:
2013
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
paired-domination
paired-domination number
Opis:
Let G = (V,E) be a graph with no isolated vertices. A set S ⊆ V is a paired-dominating set of G if every vertex not in S is adjacent with some vertex in S and the subgraph induced by S contains a perfect matching. The paired-domination number Υρ (G) of G is defined to be the minimum cardinality of a paired-dominating set of G. Let G be a graph of order n. In [Paired-domination in graphs, Networks 32 (1998), 199–206] Haynes and Slater described graphs G with Υρ (G) = n and also graphs with Υρ (G) = n − 1. In this paper we show all graphs for which Υρ (G) = n − 2.
Źródło:
Opuscula Mathematica; 2013, 33, 4; 763-783
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
γ-paired dominating graphs of cycles
Autorzy:
Eakawinrujee, Pannawat
Trakultraipruk, Nantapath
Powiązania:
https://bibliotekanauki.pl/articles/2048671.pdf
Data publikacji:
2022
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
paired dominating graph
paired dominating set
paired-domination number
Opis:
A paired dominating set of a graph G is a dominating set whose induced subgraph contains a perfect matching. The paired domination number, denoted by γpr(G), is the minimum cardinality of a paired dominating set of G. A γpr(G)-set is a paired dominating set of cardinality γpr(G). The γ-paired dominating graph of G, denoted by PDγ(G), as the graph whose vertices are γpr(G)-sets. Two γpr(G)-sets D1 and D2 are adjacent in PDγ(G) if there exists a vertex u ∈ D1 and a vertex v /∈ D1 such that D2 = (D1 \ {u}) ∪ {v}. In this paper, we present the γ-paired dominating graphs of cycles.
Źródło:
Opuscula Mathematica; 2022, 42, 1; 31-54
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Edge subdivision and edge multisubdivision versus some domination related parameters in generalized corona graphs
Autorzy:
Dettlaff, M.
Raczek, J.
Yero, I. G.
Powiązania:
https://bibliotekanauki.pl/articles/255785.pdf
Data publikacji:
2016
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
domination
paired domination
independent domination
edge subdivision
edge multisubdivision
corona graph
Opis:
Given a graph G = (V, E), the subdivision of an edge e = uv ∈ E(G) means the substitution of the edge e by a vertex x and the new edges ux and xv. The domination subdivision number of a graph G is the minimum number of edges of G which must be subdivided (where each edge can be subdivided at most once) in order to increase the domination number. Also, the domination multisubdivision number of G is the minimum number of subdivisions which must be done in one edge such that the domination number increases. Moreover, the concepts of paired domination and independent domination subdivision (respectively multisubdivision) numbers are denned similarly. In this paper we study the domination, paired domination and independent domination (subdivision and multisubdivision) numbers of the generalized corona graphs.
Źródło:
Opuscula Mathematica; 2016, 36, 5; 575-588
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Neighbourhood total domination in graphs
Autorzy:
Arumugam, S.
Sivagnanam, C.
Powiązania:
https://bibliotekanauki.pl/articles/254824.pdf
Data publikacji:
2011
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
neighbourhood total domination
total domination
connected domination
paired domination
neighbourhood total domatic number
Opis:
Let G = (V, E) be a graph without isolated vertices. A dominating set S of G is called a neighbourhood total dominating set (ntd-set) if the induced subgraph ⟨ N(S) ⟩ has no isolated vertices. The minimum cardinality of a ntd-set of G is called the neighbourhood total domination number of G and is denoted by ϒnt(G). The maximum order of a partition of V into ntd-sets is called the neighbourhood total domatic number of G and is denoted by dnt(G). In this paper we initiate a study of these parameters.
Źródło:
Opuscula Mathematica; 2011, 31, 4; 519-531
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-5 z 5

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies