Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "multi-scale" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
The development of multi-scale data management for CityGML-based 3D buildings
Autorzy:
Karim, Hairi
Rahman, Alias Abdul
Azri, Suhaibah
Halim, Zurairah
Powiązania:
https://bibliotekanauki.pl/articles/2055778.pdf
Data publikacji:
2022
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
CityGML
Level of Details (LoD)
multi-scale
scale unique ID
cross-scale query
spatial scale data management
Opis:
The CityGML model is now the norm for smart city or digital twin city development for better planning, management, risk-related modelling and other applications. CityGML comes with five levels of detail (LoD), mainly constructed from point cloud measurements and images of several systems, resulting in a variety of accuracies and detailed models. The LoDs, also known as pre-defined multi-scale models, require large storage-memory-graphic consumption compared to single scale models. Furthermore, these multi-scales have redundancy in geometries, attributes, are costly in terms of time and workload in updating tasks, and are difficult to view in a single viewer. It is essential for data owners to engage with a suitable multi-scale spatial management solution in minimizes the drawbacks of the current implementation. The proper construction, control and management of multi-scale models are needed to encourage and expedite data sharing among data owners, agencies, stakeholders and public users for efficient information retrieval and analyses. This paper discusses the construction of the CityGML model with different LoDs using several datasets. A scale unique ID is introduced to connect all respective LoDs for cross-LoD information queries within a single viewer. The paper also highlights the benefits of intermediate outputs and limitations of the proposed solution, as well as suggestions for the future.
Źródło:
Geomatics and Environmental Engineering; 2022, 16, 1; 71--94
1898-1135
Pojawia się w:
Geomatics and Environmental Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Robust content-based image retrieval using ICCV, GLCM, and DWT-MSLBP descriptors
Autorzy:
Chavda, Sagar
Goyani, Mahesh
Powiązania:
https://bibliotekanauki.pl/articles/27312841.pdf
Data publikacji:
2022
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
content-based image retrieval
improved color coherence vector
gray-level co-occurrence matrix
discrete wavelet transform
multi-scale local binary pattern
principal component analysis
linear discriminant analysis
Opis:
Content-based image retrieval (CBIR) retrieves visually similar images from a dataset based on a specified query. A CBIR system measures the similarities between a query and the image contents in a dataset and ranks the dataset images. This work presents a novel framework for retrieving similar images based on color and texture features. We have computed color features with an improved color coherence vector (ICCV) and texture features with a gray-level co-occurrence matrix (GLCM) along with DWT-MSLBP (which is derived from applying a modified multi-scale local binary pattern [MS-LBP] over a discrete wavelet transform [DWT], resulting in powerful textural features). The optimal features are computed with the help of principal component analysis (PCA) and linear discriminant analysis (LDA). The proposed work uses a variancebased approach for choosing the number of principal components/eigenvectors in PCA. PCA with a 99.99% variance preserves healthy features, and LDA selects robust ones from the set of features. The proposed method was tested on four benchmark datasets with Euclidean and city-block distances. The proposed method outshines all of the identified state-of-the-art literature methods.
Źródło:
Computer Science; 2022, 23 (1); 5--36
1508-2806
2300-7036
Pojawia się w:
Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies