- Tytuł:
- A numerical simulation study of mold filling in the injection molding process
- Autorzy:
-
Baum, Markus
Anders, Denis - Powiązania:
- https://bibliotekanauki.pl/articles/29520096.pdf
- Data publikacji:
- 2021
- Wydawca:
- Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
- Tematy:
-
injection molding
polymers
Hele-Shaw approximation
computational fluid dynamics
computing methods - Opis:
- Injection molding can undoubtedly be regarded as one of the most widely used manufacturing processes for polymers (Guevara-Morales & Figueroa-Lopez, 2014). Furthermore, injection molding has found its way into various branches of industry (Fernandez et al., 2018) since it has several essential advantages over other processing techniques in terms of good surface finish, the ability to process complex parts without the need for secondary operations, and low cost for mass production. In order to find optimal process settings, it is necessary to gain a deeper insight into the filling process and the underlying physical phenomena, as well as a thorough understanding of the complex material behavior. In this context, the numerical simulation of the injection molding process is increasingly important. Therefore, the current contribution is dedicated to present a thorough comparative numerical study for the mold filling of an exemplary thin-walled mold geometry, including a realistic non-Newtonian viscosity model for the polymer melt. For the numerical simulation, the authors employ the commercial CFD software packages Cadmould 3D-F and ANSYS CFX. While ANSYS CFX is a well-established CFD software for numerical modelling of multiphysical phenomena, Cadmould 3D-F is a highly specialized and computationally efficient alternative suitable for certain geometric configurations in the context of injection molding. The present study is new in the sense that it demonstrates the equivalence of the considered software packages for the simulation of the injection molding process in thin-walled mold geometries.
- Źródło:
-
Computer Methods in Materials Science; 2021, 21, 1; 25-34
2720-4081
2720-3948 - Pojawia się w:
- Computer Methods in Materials Science
- Dostawca treści:
- Biblioteka Nauki