Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "estimation algorithm" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Multivariate kernel density estimation with a parametric support
Autorzy:
Jarnicka, J.
Powiązania:
https://bibliotekanauki.pl/articles/255530.pdf
Data publikacji:
2009
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
density estimation
kernel
bandwidth
kernel density estimator
EM algorithm
Opis:
We consider kernel density estimation in the multivariate case, focusing on the use of some elements of parametric estimation. We present a two-step method, based on a modification of the EM algorithm and the generalized kernel density estimator, and compare this method with a couple of well known multivariate kernel density estimation methods.
Źródło:
Opuscula Mathematica; 2009, 29, 1; 41-55
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Large and moderate deviation principles for nonparametric recursive kernel distribution estimators defined by stochastic approximation method
Autorzy:
Slaoui, Yousri
Powiązania:
https://bibliotekanauki.pl/articles/254712.pdf
Data publikacji:
2019
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
distribution estimation
stochastic approximation algorithm large and moderate deviations principles
Opis:
In this paper we prove large and moderate deviations principles for the recursive kernel estimators of a distribution function defined by the stochastic approximation algorithm. We show that the estimator constructed using the stepsize which minimize the Mean Integrated Squared Error (MISE) of the class of the recursive estimators defined by Mokkadem et al. gives the same pointwise large deviations principle (LDP) and moderate deviations principle (MDP) as the Nadaraya kernel distribution estimator.
Źródło:
Opuscula Mathematica; 2019, 39, 5; 733-746
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies