Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "differential-functional equations" wg kryterium: Temat


Wyświetlanie 1-15 z 15
Tytuł:
Existence of solutions of the Dirichlet problem for an infinite system of nonlinear differential-functional equations of elliptic type
Autorzy:
Zabawa, T.S.
Powiązania:
https://bibliotekanauki.pl/articles/255205.pdf
Data publikacji:
2005
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
infinite systems
elliptic differential-functional equations
monotone iterative technique
Chaplygin's method
Dirichlet problem
Opis:
The Dirichlet problem for an infinite weakly coupled system of semilinear differential-functional equations of elliptic type is considered. It is shown the existence of solutions to this problem. The result is based on Chaplygin's method of lower and uper functions.
Źródło:
Opuscula Mathematica; 2005, 25, 2; 333-343
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Stability of solutions of infinite systems of nonlinear differential-functional equations of parabolic type
Autorzy:
Zabawa, T.S.
Powiązania:
https://bibliotekanauki.pl/articles/254967.pdf
Data publikacji:
2006
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
stability of solutions
infinite systems
parabolic equations
elliptic equations
semilinear differential-functional equations
monotone iteration method
Opis:
A parabolic initial boundary value problem and an associated elliptic Dirichlet problem for an infinite weakly coupled system of semilinear differential-functional equations are considered. It is shown that the solutions of the parabolic problem is asymptotically stable and the limit of the solution of the parabolic problem as t → ∞ is the solution of the associated elliptic problem. The result is based on the monotone methods.
Źródło:
Opuscula Mathematica; 2006, 26, 1; 173-183
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Numerical methods for hyperbolic differential functional problems
Autorzy:
Ciarski, R.
Powiązania:
https://bibliotekanauki.pl/articles/255099.pdf
Data publikacji:
2008
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
functional differential equations
stability and convergence
Opis:
The paper deals with the initial boundary value problem for quasilinear first order partial differential functional systems. A general class of difference methods for the problem is constructed. Theorems on the error estimate of approximate solutions for difference functional systems are presented. The convergence results are proved by means of consistency and stability arguments. A numerical example is given.
Źródło:
Opuscula Mathematica; 2008, 28, 1; 29-46
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Difference methods for infinite systems of hyperbolic functional differential equations on the Haar pyramid
Autorzy:
Jaruszewska-Walczak, D.
Powiązania:
https://bibliotekanauki.pl/articles/2050179.pdf
Data publikacji:
2004
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
initial problems
infinite systems of differential functional equations
difference functional inequalities
nonlinear estimates of Perron type
Opis:
We consider the Cauchy problem for infinite system of differential functional equations $\partial_{t}z_{k}(t, x) = f_{k}(t, x, z, \partial_{x}z_{k}(t, x)), k \in \mathbf{N}$. In the paper we consider a general class of difference methods for this problem. We prove the convergence of methods under the assumptions that given functions satisfy the nonlinear estimates of the Perron type with respect to functional variables. The proof is based on functional difference inequalities. We constructed the Euler method as an example of difference method.
Źródło:
Opuscula Mathematica; 2004, 24, 1; 85-96
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Classical solutions of initial problems for quasilinear partial functional differential equations of the first order
Autorzy:
Czernous, W.
Powiązania:
https://bibliotekanauki.pl/articles/254909.pdf
Data publikacji:
2006
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
partial functional differential equations
classical solutions
local existence
bicharacteristics
Opis:
We consider the initial problem for a quasilinear partial functional differential equation of the first order [formula], z(t, x) = varphi(t, x) ((t, x) ∈ [-h0, 0] x Rn) where z(t, x) : [-h0, 0] x [-h, h] → R is a function defined by z(t, x) (τ, ξ) = z(t + τ, + ξ) for (τ, ξ) ∈ [-h0, 0] x [-h, h]. Using the method of bicharacteristics and the fixed-point theorem we prove, under suitable assumptions, a theorem on the local existence and uniqueness of classical solutions of the problem and its continuous dependence on the initial condition.
Źródło:
Opuscula Mathematica; 2006, 26, 1; 13-29
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Differential difference inequalities related to parabolic functional differential equations
Autorzy:
Netka, M.
Powiązania:
https://bibliotekanauki.pl/articles/255915.pdf
Data publikacji:
2010
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
parabolic functional differential equations
method of lines
stability and convergence
Opis:
Initial boundary value problems for nonlinear parabolic functional differential equations are transformed by discretization in space variables into systems of ordinary functional differential equations. A comparison theorem for differential difference inequalities is proved. Sufficient conditions for the convergence of the method of lines is given. Nonlinear estimates of the Perron type for given operators with respect to functional variables are used. Results obtained in the paper can be applied to differential integral problems and to equations with deviated variables.
Źródło:
Opuscula Mathematica; 2010, 30, 1; 95-115
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Monotone iterative methods for infinite systems of reaction-diffusion-convection equations with functional dependence
Autorzy:
Brzychczy, S.
Powiązania:
https://bibliotekanauki.pl/articles/255097.pdf
Data publikacji:
2005
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
infinite systems
reaction-diffusion-convection equations
semilinear parabolic differential-functional equations
Volterra functionals
monotone iterative methods
method of upper and lower solutions
Opis:
We consider the Fourier first initial-boundary value problem for an infinite system of semilinear parabolic differential-functional equations of reaction-diffusion-convection type of the form [formula] where [formula] in a bounded cylindrical domain (0, T] x G := D rcup Rm+1. The right-hand sides of the system are Volterra type functionals of the unknown function z. In the paper, we give methods of the construction of the monotone iterative sequences converging to the unique classical solution of the problem considered in partially ordered Banach spaces with various convergence rates of iterations. We also give remarks on monotone iterative methods in connection with numerical methods, remarks on methods for the construction of lower and upper solutions and remarks concerning the possibility of extending these methods to more general parabolic equations. All monotone iterative methods are based on differential inequalities and, in this paper, we use the theorem on weak partial differential-functional inequalities for infinite systems of parabolic equations, the comparison theorem and the maximum principle. A part of the paper is based on the results of our previous papers. These results generalize the results obtained by several authors in numerous papers for finite systems of semilinear parabolic differential equations to encompass the case of infinite systems of semilinear parabolic differential-functional equations. The monotone iterative schemes can be used for the computation of numerical solutions.
Źródło:
Opuscula Mathematica; 2005, 25, 1; 29-99
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Uniqueness of solutions of a generalized Cauchy problem for a system of first order partial functional differential equations
Autorzy:
Netka, M.
Powiązania:
https://bibliotekanauki.pl/articles/952848.pdf
Data publikacji:
2009
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
functional differential equations
comparison methods
nonlinear estimates of Perron type
Opis:
The paper is concerned with weak solutions of a generalized Cauchy problem for a nonlinear system of first order differential functional equations. A theorem on the uniqueness of a solution is proved. Nonlinear estimates of the Perron type are assumed. A method of integral functional inequalities is used.
Źródło:
Opuscula Mathematica; 2009, 29, 1; 69-79
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Estimates of solutions for parabolic differential and difference functional equations and applications
Autorzy:
Sapa, L.
Powiązania:
https://bibliotekanauki.pl/articles/254895.pdf
Data publikacji:
2012
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
parabolic differential and discrete functional equations
estimate of solution
implicit difference method
Opis:
The theorems on the estimates of solutions for nonlinear second-order partial differential functional equations of parabolic type with Dirichlet's condition and for suitable implicit finite difference functional schemes are proved. The proofs are based on the comparison technique. The convergent and stable difference method is considered without the assumption of the global generalized Perron condition posed on the functional variable but with the local one only. It is a consequence of our estimates theorems. In particular, these results cover quasi-linear equations. However, such equations are also treated separately. The functional dependence is of the Volterra type.
Źródło:
Opuscula Mathematica; 2012, 32, 3; 529-549
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On the quasilinear Cauchy problem for a hyperbolic functional differential equation
Autorzy:
Puźniakowska-Gałuch, E.
Powiązania:
https://bibliotekanauki.pl/articles/254975.pdf
Data publikacji:
2015
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
functional differential equations
Haar pyramid
differentiability of solutions
Fredholm type of equation
Opis:
The Cauchy problem for hyperbolic functional differential equations is considered. Volterra and Fredholm dependence are considered. A theorem on the local existence of generalized solutions defined on the Haar pyramid is proved. A result on differentiability of a solution with respect to initial data is proved.
Źródło:
Opuscula Mathematica; 2015, 35, 6; 915-933
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Numerical approximations of difference functional equations and applications
Autorzy:
Kamont, Z.
Powiązania:
https://bibliotekanauki.pl/articles/255105.pdf
Data publikacji:
2005
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
functional differential equations
stability and convergence
interpolating operators
nonlinear estimates of Perron type
Opis:
We give a theorem on the error estimate of approximate solutions for difference functional equations of the Volterra type. We apply this general result in the investigation of the stability of difference schemes generated by nonlinear first order partial differential functional equations and by parabolic problems. We show that all known results on difference methods for initial or initial boundary value problems can be obtained as particular cases of this general and simple result. We assume that the right hand sides of equations satisfy nonlinear estimates of the Perron type with respect to functional variables.
Źródło:
Opuscula Mathematica; 2005, 25, 1; 109-130
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Existence and regularity of solutions for hyperbolic functional differential problems
Autorzy:
Kamont, Z.
Powiązania:
https://bibliotekanauki.pl/articles/255366.pdf
Data publikacji:
2014
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
functional differential equations
weak solutions
Haar pyramid
differentiability with respect to initial functions
Opis:
A generalized Cauchy problem for quasilinear hyperbolic functional differential systems is considered. A theorem on the local existence of weak solutions is proved. The initial problem is transformed into a system of functional integral equations for an unknown function and for their partial derivatives with respect to spatial variables. The existence of solutions for this system is proved by using a method of successive approximations. We show a theorem on the differentiability of solutions with respect to initial functions which is the main result of the paper.
Źródło:
Opuscula Mathematica; 2014, 34, 2; 217-242
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Classical solutions of mixed problems for quasilinear first order PFDEs on a cylindrical domain
Autorzy:
Czernous, W.
Powiązania:
https://bibliotekanauki.pl/articles/255887.pdf
Data publikacji:
2014
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
partial functional differential equations
classical solutions
local existence
characteristcs
cylindrical domain
a priori estimates
Opis:
We abandon the setting of the domain as a Cartesian product of real intervals, customary for first order PFDEs (partial functional differential equations) with initial boundary conditions. We give a new set of conditions on the possibly unbounded domain Ω with Lipschitz differentiable boundary. Well-posedness is then reliant on a variant of the normal vector condition. There is a neighbourhood of ∂Ω with the property that if a characteristic trajectory has a point therein, then its every earlier point lies there as well. With local assumptions on coefficients and on the free term, we prove existence and Lipschitz dependence on data of classical solutions on (0,c)×Ω to the initial boundary value problem, for small c. Regularity of solutions matches this domain, and the proof uses the Banach fixed-point theorem. Our general model of functional dependence covers problems with deviating arguments and integro-differential equations.
Źródło:
Opuscula Mathematica; 2014, 34, 2; 291-310
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Difference problems generated by infinite systems of nonlinear parabolic functional differential equations with the Robin conditions
Autorzy:
Czernous, W.
Jaruszewska-Walczak, D.
Powiązania:
https://bibliotekanauki.pl/articles/255694.pdf
Data publikacji:
2014
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
nonlinear parabolic equations
functional differential equations
infinite systems
Volterra type operators
nonlinear estimates of Perron type
truncation methods
Opis:
We consider the classical solutions of mixed problems for infinite, countable systems of parabolic functional differential equations. Difference methods of two types are constructed and convergence theorems are proved. In the first type, we approximate the exact solutions by solutions of infinite difference systems. Methods of second type are truncation of the infinite difference system, so that the resulting difference problem is finite and practically solvable. The proof of stability is based on a comparison technique with nonlinear estimates of the Perron type for the given functions. The comparison system is infinite. Parabolic problems with deviated variables and integro-differential problems can be obtained from the general model by specifying the given operators.
Źródło:
Opuscula Mathematica; 2014, 34, 2; 311-326
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Critical cases in neutral functional differential equations, arising from hydraulic engineering
Autorzy:
Răsvan, Vladimir
Powiązania:
https://bibliotekanauki.pl/articles/2216162.pdf
Data publikacji:
2022
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
1D hyperbolic partial differential equations
neutral functional differential equation
difference operator
critical case
differential equations
Opis:
This paper starts from several applications described by initial/boundary value problems for 1D (time and one space variable) hyperbolic partial differential equations whose basic properties and stability of equilibria are studied throughout the same properties for certain associated neutral functional differential equations. It is a common fact that asymptotic stability for neutral functional differential equations is normally obtained under the assumption of asymptotic stability of the difference operator associated to the aforementioned neutral functional differential equations. However the physically meaningful applications presented in the paper have the associated difference operator(s) in critical cases (their stability is, generally speaking, non-asymptotic). Consequently the stability of the considered application models is either non-asymptotic or fragile (in a sense introduced in the paper). The models represent an overview gathered from various fields, processed here in order to emphasize the associated neutral functional differential equations which, consequently, are a challenge to the usual approaches. In the concluding part there are suggested possible ways to overcome these difficulties.
Źródło:
Opuscula Mathematica; 2022, 42, 4; 605-633
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-15 z 15

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies