- Tytuł:
- On the blowing up solutions of the 4-d general q-Kuramoto-Sivashinsky equation with exponentially “dominated” nonlinearity and singular weight
- Autorzy:
-
Baraket, Sami
Mahdaoui, Safia
Ouni, Taieb - Powiązania:
- https://bibliotekanauki.pl/articles/29519212.pdf
- Data publikacji:
- 2023
- Wydawca:
- Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
- Tematy:
-
singular limits
Green’s function
nonlinearity
gradient
nonlinear domain decomposition method - Opis:
- Let Ω be a bounded domain in $ \mathbb{R}^4 $ with smooth boundary and let $ x^1, x^2, . . . , x^m $ be m-points in Ω. We are concerned with the problem $ \Delta^2 u - H(x, u, D^k u)=\rho^4 \prod_{i=1}^n | x - p_i |^{4 \alpha_i } f(x)g(u), $ where the principal term is the bi-Laplacian operator, $ H(x, u, D^k u)$ is a functional which grows with respect to $ Du $ at most like $ |Du|^q, 1 ≤ q ≤ 4, f : Ω → [0,+∞[ $ is a smooth function satisfying f(pi) > 0 for any i = 1, . . . , n, $ α_i $ are positives numbers and $ g : \mathbb{R} → [0,+∞[ $ satisfy $ |g(u)| ≤ ce^u $. In this paper, we give sufficient conditions for existence of a family of positive weak solutions $ (u_ρ)_{ρ>0} $ in Ω under Navier boundary conditions u = Δu = 0 on ∂Ω. The solutions we constructed are singular as the parameters ρ tends to 0, when the set of concentration $ S = {x^1, . . . , x^m} ⊂ Ω $ and the set $ Λ := {p_1, . . . , p_n} ⊂ Ω $ are not necessarily disjoint. The proof is mainly based on nonlinear domain decomposition method.
- Źródło:
-
Opuscula Mathematica; 2023, 43, 1; 5-18
1232-9274
2300-6919 - Pojawia się w:
- Opuscula Mathematica
- Dostawca treści:
- Biblioteka Nauki