Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "cyber attack detections" wg kryterium: Temat


Wyświetlanie 1-1 z 1
Tytuł:
Sensor based cyber attack detections in critical infrastructures using deep learning algorithms
Autorzy:
Yilmaz, Murat
Catak, Ferhat Ozgur
Gul, Ensar
Powiązania:
https://bibliotekanauki.pl/articles/952946.pdf
Data publikacji:
2019
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
cyber security
engineering
critical infrastructures
industrial systems
information security
cyber attack detections
Opis:
The technology that has evolved with innovations in the digital world has also caused an increase in many security problems. Day by day the methods and forms of the cyberattacks began to become complicated, and therefore their detection became more difficult. In this work we have used the datasets which have been prepared in collaboration with Raymond Borges and Oak Ridge National Laboratories. These datasets include measurements of the Industrial Control Systems related to chewing attack behavior. These measurements include synchronized measurements and data records from Snort and relays with the simulated control panel. In this study, we developed two models using this datasets. The first is the model we call the DNN Model which was build using the latest Deep Learning algorithms. The second model was created by adding the AutoEncoder structure to the DNN Model. All of the variables used when developing our models were set parametrically. A number of variables such as activation method, number of hidden layers in the model, the number of nodes in the layers, number of iterations were analyzed to create the optimum model design. When we run our model with optimum settings, we obtained better results than related studies. The learning speed of the model has 100\% accuracy rate which is also entirely satisfactory. While the training period of the dataset containing about 4 thousand different operations lasts about 90 seconds, the developed model completes the learning process at the level of milliseconds to detect new attacks. This increases the applicability of the model in real world environment.
Źródło:
Computer Science; 2019, 20 (2); 213-243
1508-2806
2300-7036
Pojawia się w:
Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies