- Tytuł:
- Spectrum of discrete 2n-th order difference operator with periodic boundary conditions and its applications
- Autorzy:
-
El Amrouss, Abdelrachid
Hammouti, Omar - Powiązania:
- https://bibliotekanauki.pl/articles/2051984.pdf
- Data publikacji:
- 2021
- Wydawca:
- Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
- Tematy:
-
discrete boundary value problems
2n-th order
variational methods
critical point theory - Opis:
- Let $n \in N^{\star}$, and $N \geq n$ be an integer. We study the spectrum of discrete linear $2n$-th order eigenvalue problems \[ \begin{cases} \Sigma_{k=0}^{n}(-1)^{k} \Delta^{2k} u(t-k) = \lambda{}u(t), & t \in[1,N]_{\mathbb{Z}} \\ \Delta^{i}u(-(n-1)) = \Delta^{i}u(N-(n-1)), & i \in[0, 2n-1]_{\mathbb{Z}} \end{cases} \] where A is a parameter. As an application of this spectrum result, we show the existence of a solution of discrete nonlinear $2n$-th order problems by applying the variational methods and critical point theory.
- Źródło:
-
Opuscula Mathematica; 2021, 41, 4; 489-507
1232-9274
2300-6919 - Pojawia się w:
- Opuscula Mathematica
- Dostawca treści:
- Biblioteka Nauki