Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Sieć Kohonena" wg kryterium: Temat


Wyświetlanie 1-1 z 1
Tytuł:
Zastosowanie samoorganizujących sieci neuronowych Kohonena w klasyfikacji sejsmofacjalnej (rejon Ujkowice - Batycze)
Application of Kohonens Self Organizing Networks in seismofacies classification (the Ujkowice - Batycze area)
Autorzy:
Dzwinel, K.
Haber, A.
Krawiec, D.
Powiązania:
https://bibliotekanauki.pl/articles/184042.pdf
Data publikacji:
2006
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
atrybuty sesjmiczne
analiza sejsmofacjalna
krosskorelacja
samoorganizująca sieć neuronowa Kohonena
seismic attributes
seismofacies analysis
crosscorrelation Kohonen's Self Organizing Networks
Opis:
Artykuł przedstawia zastosowanie samoorganizujących sieci neuronowych Kohonena w klasyfikacji formy zapisu sejsmicznego. Klasyfikacja ta jest jednym z podstawowych elementów analizy sejsmofacjalnej, prowadzącej do wyciągnięcia znaczących wniosków poszukiwawczych. Istotnymi elementami takiej analizy są: wybór atrybutów sejsmicznych oraz użycie właściwego sposobu klasteryzacji. Do klasteryzacji użyto atrybutów AVA, które niosą ze sobą informacje o własnościach petrofizycznych skał. W celu zbadania rozkładu facji sejsmicznej na wybranym obszarze posłużono się dodatkowo innymi metodami wielowymiarowej analizy atrybutów sejsmicznych: klasyfikacją wybranego obszaru krossplotu "intercept-gradient" oraz klasteryzacją wykonaną metodą minimalizującą iloczyn odległości obiektów w wydzielanych grupach. Weryfikacji optymalnej metody klasyfikacji danych dokonano na podstawie obserwacji kształtów klastrów i ich charakterystyk.
This paper presents the application of Kohonen's Self Organizing Networks in classification of seismic waveform. The classification is one of the basic elements of seismofacies analysis and it often leads to significant exploratory conclusions. Important elements of this kind of analysis are: selection of seismic attributes and usage of appropriate clustering method. There were used AVA attributes, which include information about petrophysical properties of rocks. There used two additional multi-dimensional methods to examine seismic facies distribution on selected area: classification of chosen crossplot intercept-gradient area and classification carried out by method which minimizes the product of objects distances in groups. Verification of optimal method for data classification was made based on observation of clusters shape and their characteristic due to insufficient information from wells.
Źródło:
Geologia / Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie; 2006, 32, 4; 441-450
0138-0974
Pojawia się w:
Geologia / Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies