Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Pietron, M." wg kryterium: Autor


Wyświetlanie 1-3 z 3
Tytuł:
Accelerating SELECT WHERE and SELECT JOIN queries on a GPU
Autorzy:
Pietroń, M.
Russek, P.
Wiatr, K.
Powiązania:
https://bibliotekanauki.pl/articles/305797.pdf
Data publikacji:
2013
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
SQL
CUDA
relational databases
GPU
Opis:
This paper presents implementations of a few selected SQL operations using the CUDA programming framework on the GPU platform. Nowadays, the GPU’s parallel architectures give a high speed-up on certain problems. Therefore, the number of non-graphical problems that can be run and sped-up on the GPU still increases. Especially, there has been a lot of research in data mining on GPUs. In many cases it proves the advantage of offloading processing from the CPU to the GPU. At the beginning of our project we chose the set of SELECT WHERE and SELECT JOIN instructions as the most common operations used in databases. We parallelized these SQL operations using three main mechanisms in CUDA: thread group hierarchy, shared memories, and barrier synchronization. Our results show that the implemented highly parallel SELECT WHERE and SELECT JOIN operations on the GPU platform can be significantly faster than the sequential one in a database system run on the CPU.
Źródło:
Computer Science; 2013, 14 (2); 243-252
1508-2806
2300-7036
Pojawia się w:
Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
FPGA implementation of procedures for video quality assessment
Autorzy:
Wielgosz, M.
Karwatowski, M.
Pietron, M.
Wiatr, K.
Powiązania:
https://bibliotekanauki.pl/articles/305403.pdf
Data publikacji:
2018
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
video quality
video metrics
image processing
FPGA
Impulse C
Opis:
The video resolutions used in a variety of media are constantly rising. While manufacturers struggle to perfect their screens, it is also important to ensure the high quality of the displayed image. Overall quality can be measured using a Mean Opinion Score (MOS). Video quality can be affected by miscellaneous artifacts appearing at every stage of video creation and transmission. In this paper, we present a solution to calculate four distinct video quality metrics that can be applied to a real-time video quality assessment system. Our assessment module is capable of processing 8K resolution in real time set at a level of 30 frames per second. The throughput of 2.19 GB/s surpasses the performance of pure software solutions. The module was created using a high-level language to concentrate on architectural optimization.
Źródło:
Computer Science; 2018, 19 (3); 279-305
1508-2806
2300-7036
Pojawia się w:
Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The comparison of parallel sorting algorithms implemented on different hardware platforms
Autorzy:
Żurek, D.
Pietroń, M.
Wielgosz, M.
Wiatr, K.
Powiązania:
https://bibliotekanauki.pl/articles/305317.pdf
Data publikacji:
2013
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
parallel algorithms
GPU
OpenMP
CUDA
sorting networks
merge-sort
Opis:
Sorting is a common problem in computer science. There are a lot of well-known sorting algorithms created for sequential execution on a single processor. Recently, many-core and multi-core platforms have enabled the creation of wide parallel algorithms. We have standard processors that consist of multiple cores and hardware accelerators, like the GPU. Graphic cards, with their parallel architecture, provide new opportunities to speed up many algorithms. In this paper, we describe the results from the implementation of a few different parallel sorting algorithms on GPU cards and multi-core processors. Then, a hybrid algorithm will be presented, consisting of parts executed on both platforms (a standard CPU and GPU). In recent literature about the implementation of sorting algorithms in the GPU, a fair comparison between many core and multi-core platforms is lacking. In most cases, these describe the resulting time of sorting algorithm executions on the GPU platform and a single CPU core.
Źródło:
Computer Science; 2013, 14 (4); 679-691
1508-2806
2300-7036
Pojawia się w:
Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies