- Tytuł:
- A sampling theory for infinite weighted graphs
- Autorzy:
- Jorgensen, P. E. T.
- Powiązania:
- https://bibliotekanauki.pl/articles/254989.pdf
- Data publikacji:
- 2011
- Wydawca:
- Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
- Tematy:
-
weighted graph
Hilbert space
Laplace operator
sampling
Shannon
white noise
Wiener transform
interpolation - Opis:
- We prove two sampling theorems for infinite (countable discrete) weighted graphs G; one example being "large grids of resistors" i.e., networks and systems of resistors. We show that there is natural ambient continuum X containing G, and there are Hilbert spaces of functions on X that allow interpolation by sampling values of the functions restricted only on the vertices in G. We sample functions on X from their discrete values picked in the vertex-subset G. We prove two theorems that allow for such realistic ambient spaces X for a fixed graph G, and for interpolation kernels in function Hilbert spaces on X, sampling only from points in the subset of vertices in G. A continuum is often not apparent at the outset from the given graph G. We will solve this problem with the use of ideas from stochastic integration.
- Źródło:
-
Opuscula Mathematica; 2011, 31, 2; 209-236
1232-9274
2300-6919 - Pojawia się w:
- Opuscula Mathematica
- Dostawca treści:
- Biblioteka Nauki