- Tytuł:
- On the gauge-natural operators similar to the twisted Dorfman-Courant bracket
- Autorzy:
- Mikulski, Włodzimierz M.
- Powiązania:
- https://bibliotekanauki.pl/articles/2050976.pdf
- Data publikacji:
- 2021
- Wydawca:
- Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
- Tematy:
-
natural operator
linear vector field
linear form
twisted Dorfman-Courant bracket
the Jacobi identity in Leibniz form - Opis:
- All $\mathcal{VB}_{m,n}$-gauge-natural operators $C$ sending linear 3-forms $H \in \Gamma_{E}^{l}(\wedge^{3}T*E)$ on a smooth $\mathcal{C}^{\infty}$ vector bundle $E$ into $\mathbf{R}$-bilinear operators $$C_{H} : \Gamma_{E}^{l}(TE \oplus T* E) \times \Gamma_{E}^{l}(TE \oplus T* E) \rightarrow \Gamma_{E}^{l} (TE \oplus T* E)$$ transforming pairs of linear sections of $(TE \oplus T* E) \rightarrow E$ into linear sections of $(TE \oplus T* E) \rightarrow E$ are completely described. The complete descriptions is given of all generalized twisted Dorfman-Courant brackets C (i.e. C as above such that $C_{0}$ is the Dorfman-Courant bracket) satisfying the Jacobi identity for closed linear 3-forms $H$ . An interesting natural characterization of the (usual) twisted Dorfman-Courant bracket is presented.
- Źródło:
-
Opuscula Mathematica; 2021, 41, 2; 205-226
1232-9274
2300-6919 - Pojawia się w:
- Opuscula Mathematica
- Dostawca treści:
- Biblioteka Nauki