- Tytuł:
- Region of existence of multiple solutions for a class of robin type four-point bvps
- Autorzy:
-
Verma, Amit K.
Urus, Nazia
Agarwal, Ravi P. - Powiązania:
- https://bibliotekanauki.pl/articles/2052065.pdf
- Data publikacji:
- 2021
- Wydawca:
- Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
- Tematy:
-
Green’s function
monotone iterative technique
maximum principle
multi-point problem - Opis:
- This article aims to prove the existence of a solution and compute the region of existence for a class of four-point nonlinear boundary value problems (NLBVPs) defined as \[ \begin{array}{lr} -u^{\prime\prime}(x) = \psi(x,u,u^{\prime}), & x \in (0,1) \\ u^{\prime}(0) = \lambda_{1}u(\xi), & u^{\prime}(1) = \lambda_{2}u(\eta) \end{array} \] where $I = [0, 1], 0 < \xi \leq \eta < 1 \text{ and } \lambda_{1} ,\lambda_{2} > 0$. The nonlinear source term $\psi \in C(I \times \mathbb{R}^{2}, \mathbb{R})$ is one sided Lipschitz in $u$ with Lipschitz constant $L_{1}$ and Lipschitz in $u^{\prime}$, such that $\vert \psi(x, u, u^{\prime}) - \psi(x, u, v^{\prime})\vert$. We develop monotone iterative technique (MI-technique) in both well ordered and reverse ordered cases. We prove maximum, anti-maximum principle under certain assumptions and use it to show the monotonic behaviour of the sequences of upper-lower solutions. The sufficient conditions are derived for the existence of solution and verified for two examples. The above NLBVPs is linearised using Newton’s quasilinearization method which involves a parameter k equivalent to $\text{max}_{u} \frac{\delta\psi}{\delta_{u}}$. We compute the range of $k$ for which iterative sequences are convergent.
- Źródło:
-
Opuscula Mathematica; 2021, 41, 4; 571-600
1232-9274
2300-6919 - Pojawia się w:
- Opuscula Mathematica
- Dostawca treści:
- Biblioteka Nauki