Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "thin layers" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Physiochemical and biological evaluation of thin CNTs layers
Autorzy:
Benko, A.
Przekora, A.
Nocuń, M.
Wesełucha-Birczyńska, A.
Ginalska, G.
Błażewicz, M.
Powiązania:
https://bibliotekanauki.pl/articles/286004.pdf
Data publikacji:
2014
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Polskie Towarzystwo Biominerałów
Tematy:
EPD
MWCNTs
thin layers
biocompatibility
Opis:
Carbon nanotubes are nanometric-sized materiale which possess a set of interesting features that favor their applications in various fields of materials engineering, including biomedical applications. However, their usage as implants or in nanomedicine raises many questions, regarding their potential cytotoxicity, relative to their length, diameter, structure and functional groups, present on their outer walls. The given study presents a physiochemical and biological in vitro (in accordance with EN-ISO 10993-5) evaluation of thin carbon nanotubes films, deposited on the surface of titanium, by means of the EPD process. Experiments were carried out on commercially available, pre-functionalized with OH groups, multi-walled carbon nanotubes. The obtained material is proven to be biocompatible, with no cytotoxic effect on the human fetal osteoblast cell line. During the study, selectivity of the EPD process was proven - performed experiments revealed that the process favors deposition of CNTs with chosen set of features from the stock solution. Presented results point out that the EPD process can be successfully applied as a method for fractioning the CNTs, aimed to fabricate non-toxic layers that might be considered for various biomedical applications.
Źródło:
Engineering of Biomaterials; 2014, 17, no. 128-129; 93-94
1429-7248
Pojawia się w:
Engineering of Biomaterials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Laser modified functional carbon-based coatings on titanium substrate for cardiac tissue integration and blood clotting inhibition
Autorzy:
Major, Roman
Ostrowski, Roman
Surmiak, Marcin
Trembecka-Wójciga, Klaudia
Lackner, Jurgen
Powiązania:
https://bibliotekanauki.pl/articles/1844973.pdf
Data publikacji:
2020
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Polskie Towarzystwo Biominerałów
Tematy:
thin layers
migration channels
laser ablation
microstructure
Opis:
The work focused on developing functional coatings on titanium substrates that would facilitate the integration with the cardiac tissue and with a specific form of connective tissue like blood. Surface modifications consisted in the laser evaporation of part of the biocompatible layer, thus creating a suitable environment for a particular tissue. For the myocardium integration, the metal surface was refined by biohemocompatible coatings. Such surfaces were the starting point for further modifications in the form of channels. The channeled surfaces enabled a controlled cell migration and proliferation. The interaction of endothelial cells with the material was highly dependent on the surface characteristics such as: topography, microstructure or mechanical properties. The controlled cellular response was achieved by modifying the surface to obtain a network of wells or channels of different dimensions via the laser interference lithography. This technique determined a high resolution shape, size and distribution patterns. As a result, it was possible to control cells in the scale corresponding to biological processes. The surface periodization ensured the optimal flow of oxygen and nutrients within the biomaterial, which was of a key importance for the cell adhesion and proliferation. The work attempted at producing the surface networks mimicking natural blood vessels. To stimulate the formation of new blood vessel the finishing resorbable synthetic coatings were applied on the surface to act as a drug carrier. Therefore, the initial trial to introduce factors stimulating the blood vessels growth was performed.
Źródło:
Engineering of Biomaterials; 2020, 23, 155; 22-31
1429-7248
Pojawia się w:
Engineering of Biomaterials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Monitoring vital functions of A-375 melanoma cell cultures via thin-film nickel capacitors
Autorzy:
Wilczyńska, Aleksandra
Kociubiński, Andrzej
Zarzeczny, Dawid
Szypulski, Maciej
Pigoń, Dominika
Małecka-Massalska, Teresa
Prendecka-Wróbel, Monika
Powiązania:
https://bibliotekanauki.pl/articles/1844972.pdf
Data publikacji:
2020
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Polskie Towarzystwo Biominerałów
Tematy:
ECIS
nickel
thin layers
melanoma
magnetron sputtering
Opis:
This article deals in the constantly developing branch of microelectronic devices used in various fields of medicine, i.e. diagnostics and treatment of previously incurable human diseases. A method for assessing and monitoring the vital functions of living cells by measuring cellular impedance in real-time using the ECIS® system and a commercial culture substrate is presented. The goal was to develop a substrate significantly less expensive than a commercial substrate that would be suitable for multiple uses and compatible with the ECIS® measurement station. Moreover, thanks to the use of a material with electrochemical properties other than the biocompatible material (gold or platinum) it is possible to observe the cells behavior with regard to the toxic agent. For this purpose, a culture substrate with nickel comb capacitors was used. To make the electrodes, a thin metal layer was sputtered on polycarbonate plates in the magnetron sputtering process. Prior to the next stages, technological masks were designed so as to fit in the ECIS® measuring station. Subsequently, the microelectronic processes of photolithography and etching the metal layer were performed. Finally, the wells were glued onto the culture medium with a biocompatible adhesive. The completed substrates were transferred to the Department of Human Physiology, Medical University of Lublin, for the culture test on A-375 human melanoma cells. The results of the experiment determined the usefulness of the device for monitoring cell culture vital functions by means of impedance measurement.
Źródło:
Engineering of Biomaterials; 2020, 23, 157; 10-14
1429-7248
Pojawia się w:
Engineering of Biomaterials
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies