- Tytuł:
- Plasma oxidized Ti6Al4V and Ti6Al7Nb alloys for biomedical applications
- Autorzy:
-
Pązik, B.
Grabarczyk, J.
Batory, D.
Kaczorowski, W.
Burnat, B.
Czerniak-Reczulska, M.
Makówka, M.
Niedzielski, P. - Powiązania:
- https://bibliotekanauki.pl/articles/285637.pdf
- Data publikacji:
- 2016
- Wydawca:
- Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Polskie Towarzystwo Biominerałów
- Tematy:
-
titanium alloys
plasma oxidizing
tribology
wear
corrosion - Opis:
- Titanium and its alloys are one of the most popular metallic materials used in medicine for many years. Their favorable mechanical properties, high corrosion resistance and good biotolerance in an environment of tissues and body fluids, cause that they are widely used as construction material of orthopaedic dental and neurological implants. Their disadvantages are poor tribological properties manifested by high coefficient of friction, scuffing and tendency to formation of adhesive couplings. In many research centers the works on improving the unfavorable tribological properties of titanium alloys are conducted. They rely on the use of modern methods of surface treatment including the thermo-chemical methods (nitriding, carburizing, oxidation) and the synthesis of thin films using PVD and CVD methods. In the presented work the glow discharge oxidation was applied to improve the surface properties of two-phase Ti6Al4V and Ti6Al7Nb titanium alloys. The results include a description of the obtained structure of the surface layer, surface topography, micro-hardness, wear ratio and corrosion resistance. The obtained results indicate changes in the surface layer of the material. The surface hardness was more than doubled and the depth of increased hardness region was up to 85 microns. This, in turn, several times decreased the wear rate of the modified materials while reducing the wear rate of the countersample. At the same time the carried out thermo-chemical treatment did not cause any structural changes in the core material. The oxidation process preferably influenced the corrosion properties of titanium alloys. Both, significant increase in the corrosion potential (approx. 0.36 V), as well as increased polarization resistance were observed. The modified surfaces also retained a high resistance to pitting corrosion.
- Źródło:
-
Engineering of Biomaterials; 2016, 19, 135; 8-12
1429-7248 - Pojawia się w:
- Engineering of Biomaterials
- Dostawca treści:
- Biblioteka Nauki