Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "coordination theory" wg kryterium: Wszystkie pola


Wyświetlanie 1-1 z 1
Tytuł:
Zastosowanie teorii systemów hierarchicznych do analizy sztucznych sieci neuronowych
Application of the Theory of Hierarchical Systems to Analyse Artificial Neural Networks
Autorzy:
Płaczek, Stanisław
Powiązania:
https://bibliotekanauki.pl/articles/440175.pdf
Data publikacji:
2015
Wydawca:
Akademia Finansów i Biznesu Vistula
Tematy:
Sztuczne Sieci Neuronowe
hierarchiczne struktury
dekompozycja
koordynacja
systemy złożone
artificial neural networks
hierarchical structures
decomposition
coordination
complex systems
Opis:
Sztuczne Sieci Neuronowe (SSN) okazały się wygodnym narzędziem, przydatnym przy realizacji bardzo wielu różnych praktycznych zadań inżynierskich, ekonomicznych finansowych, medycznych i innych. SSN mogą być zastosowane tame, gdzie pojawiają się problemy z przetwarzaniem i analizą danych, prognozą, klasyfikacją czy sterowaniem. Sukces spowodowany jest tym, że w tych zastosowaniach SSN pełni rolę uniwersalnego aproksymatora nieliniowej, wektorowej funkcji wielu zmiennych. Podstawowym problemem jest efektywne uczenie złożonej konfiguracji sieci, jaką niewątpliwie jest struktura wielowarstwowej sieci neuronowej o wielu wejściach i wyjściach. Uczenie polega na poszukiwaniu minimum globalnej funkcji celu, którą najczęściej definiujemy jako błąd średniokwadratowy wyjścia sieci i warto-ści zadanej. Zadanie nie jest trywialne i ze względu na wielowymiarowość wektorów wejścia i wyjścia oraz wielowarstwowość sieci. Z tego też względu szuka się rozwiązań w sieciach o strukturze z jedną warstwą ukrytą. W celu wykorzystania możliwości sieci wielowarstwowych, do analizy złożonych struktur zastosowano metody i techniki opracowane dla wielowarstwowych, hierarchicznych struktur technicznych. Systemy hierarchiczne występują nie tylko w przyrodzie, lecz również w organizacjach ludzi. Tego typy struktury są bardzo efektywne z punktu widzenia zarządzania i kierowania organizacjami. Z systemami hierarchicznymi związane są zagadnienia dekompozycji dużego, podstawowego systemu na podsystemy oraz umiejętne skoordynowanie rozwiązań cząstkowych, w celu otrzymania rozwiązania optymalnego dla całego systemu. W artykule przedstawiono próbę zastosowania dekompozycji oraz koordynacji w stosunku do SSN o złożonej, wielowarstwowej strukturze. Dekomponując strukturę sieci oraz algorytm uczenia na podzadania, analizuje się wymagania, które musi spełnić algorytm w celu efektywnej koordynacji rozwiązań cząstkowych. Tak więc problem koordynacji jest problemem centralnym w analizie i konstrukcji algorytmu uczenia SSN. Artykuł ma charakter koncepcyjny.
Artificial neural networks (ANN) have appeared to be a convenient tool, useful for implementation of very many practical engineering, economic, financial, medical, and other tasks. ANN may be applied where the problems with data processing and analysis, forecast, classification or steering appear. The success is caused by the fact that in these applications ANN plays the role of universal approximator of the non-linear, vectored function of many variables. The basic problem is an effective teaching of the complex configuration of the network which, no doubt, the structure of multilayer neural network with many inputs and outputs is. Teaching consists in seeking for the minimum global function of the purpose, which is most oft en defined as a mean squared error of the network input and the set-point. The task is not trivial also due to the multidimensionality of vectors of input and output as well as due to the multilayer nature of the network. Also having this in mind, there are attempts to fi nd solutions in networks with the structure with one hidden layer. In order to make use of the possibilities of multilayer networks, the author applied for the analysis of complex structures the methods and techniques developed for multilayer, hierarchical technical structures. Hierarchical systems take place not only in the nature but also in human organisations. Such structures are very effective from the point of view of organisation management and direction. The hierarchical systems are combined with the issues of decomposition of a big, basic system into subsystems and a skilful coordination of partial solutions in order to obtain a solution optimal for the entire system. In his article, the author presented an attempt to apply decomposition and coordination in relation to ANN with a complex, multilayer structure. Decomposing the network structure and the algorithm of teaching into subtasks, he analyses the requirements to be met by the algorithm for the purpose of effective coordination of partial solutions. Thus, the problem of coordination is the central problem in the analysis and construction of the ANN algorithm of teaching. The article is of the conceptual nature.
Źródło:
Kwartalnik Naukowy Uczelni Vistula; 2015, 2(44); 102-116
2084-4689
Pojawia się w:
Kwartalnik Naukowy Uczelni Vistula
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies