Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "język programowania" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Porównanie wydajności algorytmu k-means zaimplementowanego w języku X10 i środowisku C++/MPI
Performance comparison of the k-means algorithm implemented in the X10 programming language and the C++/MPI environment
Autorzy:
Wyrzykowski, R.
Karoń, T.
Powiązania:
https://bibliotekanauki.pl/articles/91405.pdf
Data publikacji:
2016
Wydawca:
Warszawska Wyższa Szkoła Informatyki
Tematy:
algorytm k-średnich
język programowania X10
środowisko C++/MPI
porównanie
k-means algorithm
X10 programming language
C++/MPI environment
comparison
Opis:
W pracy opisano algorytm k-średnich oraz sposób jego implementacji w języku X10. Dokonano porównania tego rozwiązania z implementacją w języku C++11 z wykorzystaniem standardu MPI. Stwierdzono, że implementacja w języku X10 jest szybsza przy większej liczbie procesorów realizujących obliczenia niż implementacja w środowisku C++/MPI. Kod zapisany w języku X10 jest o 59% krótszy od kodu dla kombinacji C++/MPI.
In this work the k-means algorithm and the way of its implementation in the X10 programming language are described. The achieved results are compared with the implementation of the same algorithm in the C++11 programming language using the MPI standard. It was confirmed that the implementation in the X10 programming language is faster on a large number of processors than the implementation in the C++/MPI environment. Additionally, the X10 code is about 59% shorter than the code for the C++/MPI combination.
Źródło:
Zeszyty Naukowe Warszawskiej Wyższej Szkoły Informatyki; 2016, 10, 14; 7-35
1896-396X
2082-8349
Pojawia się w:
Zeszyty Naukowe Warszawskiej Wyższej Szkoły Informatyki
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Hybrydowy system rekomendacji planów treningowych
Training plans hybrid recommender system
Autorzy:
Kaczanowski, Maciej
Powiązania:
https://bibliotekanauki.pl/articles/91455.pdf
Data publikacji:
2019
Wydawca:
Warszawska Wyższa Szkoła Informatyki
Tematy:
uczenie maszynowe
sztuczna inteligencja
nauka o danych
hybrydowe systemy rekomendacji
Microsoft Azure Machine Learning
język programowania Python
machine learning
artificial intelligence
data science
hybrid recommender
Python programming language
Opis:
Hybrydowe systemy rekomendacji łączą zalety metod stosowanych powszechnie w rekomendacji. Głównym celem tego artykułu jest przedstawienie zastosowania uczenia maszynowego do budowy hybrydowego silnika rekomendacji. Uczenie maszynowe jest poddziedziną sztucznej inteligencji, która wykazuję obiecujące rezultaty w klasyfikacji, predykcji, wykrywaniu anomalii i rekomendacji. W tym artykule zaproponowano koncepcję spersonalizowanego modelu systemu rekomendacji opartego na parametrach i planach treningowych sportowców. Badania przeprowadzono w środowisku chmurowym Microsoft Azure Machine Learning Studio na zbiorze danych wygenerowanym na podstawie danych referencyjnych.
Hybrid recommendation systems combine the advantages of commonly used methods in recommendations. This main objective of this article is to present application of machine learning to build a hybrid recommendation engine. Machine learning is subdomain of artificial intelligence that show promising results in classification, prediction, anomaly detection and recommendations. This paper proposed a personalized recommendation system model based on athletes parameters and training plans. The researches were carried out in the cloud environment Microsoft Azure Machine Learning Studio on football data set.
Źródło:
Zeszyty Naukowe Warszawskiej Wyższej Szkoły Informatyki; 2019, 13, 20; 29-40
1896-396X
2082-8349
Pojawia się w:
Zeszyty Naukowe Warszawskiej Wyższej Szkoły Informatyki
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies