Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "python" wg kryterium: Wszystkie pola


Wyświetlanie 1-5 z 5
Tytuł:
Ensemble Classification : Example and Python Implementation
Autorzy:
Andziak, Piotr
Figielska, Ewa
Powiązania:
https://bibliotekanauki.pl/articles/91525.pdf
Data publikacji:
2019
Wydawca:
Warszawska Wyższa Szkoła Informatyki
Tematy:
ensemble classification
clustering
python
Opis:
The paper presents an ensemble classification method based on clustering, along with its implementation in the Python programming language. An illustrative example showing the method behavior is provided, and the results of a computational experiment performed on real life data sets are reported.
Źródło:
Zeszyty Naukowe Warszawskiej Wyższej Szkoły Informatyki; 2019, 13, 21; 7-22
1896-396X
2082-8349
Pojawia się w:
Zeszyty Naukowe Warszawskiej Wyższej Szkoły Informatyki
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Code refactoring: a Python example
Autorzy:
Figielska, Ewa
Powiązania:
https://bibliotekanauki.pl/articles/2163407.pdf
Data publikacji:
2022-12
Wydawca:
Warszawska Wyższa Szkoła Informatyki
Tematy:
Refactoring
Code smells
Object-oriented programming
Unit tests
Python
Opis:
In this paper, several refactoring techniques are shown, using an example in which the design of a program for solving a simple problem is gradually improved. Before introducing any change to the program, the drawbacks of its current version are discussed, bad code smells are identified, and some unit tests are provided. The source code is written in Python.
Źródło:
Zeszyty Naukowe Warszawskiej Wyższej Szkoły Informatyki; 2022, 16, 27; 39-56
1896-396X
2082-8349
Pojawia się w:
Zeszyty Naukowe Warszawskiej Wyższej Szkoły Informatyki
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Using Template Method and Strategy Design Patterns in the Python Implementation of a Metaheuristic Algorithm for Solving Scheduling Problems
Autorzy:
Figielska, E.
Powiązania:
https://bibliotekanauki.pl/articles/91355.pdf
Data publikacji:
2017
Wydawca:
Warszawska Wyższa Szkoła Informatyki
Tematy:
design patterns
python
metaheuristic
scheduling
Opis:
The paper shows how the Template Method and Strategy design patterns can be used in a program which solves different scheduling problems by means of a metaheuristic algorithm. The benefits offered by these design patterns as well as their drawbacks are discussed. An implementation example in the Python programming language is provided.
Źródło:
Zeszyty Naukowe Warszawskiej Wyższej Szkoły Informatyki; 2017, 11, 17; 7-22
1896-396X
2082-8349
Pojawia się w:
Zeszyty Naukowe Warszawskiej Wyższej Szkoły Informatyki
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Hybrydowy system rekomendacji planów treningowych
Training plans hybrid recommender system
Autorzy:
Kaczanowski, Maciej
Powiązania:
https://bibliotekanauki.pl/articles/91455.pdf
Data publikacji:
2019
Wydawca:
Warszawska Wyższa Szkoła Informatyki
Tematy:
uczenie maszynowe
sztuczna inteligencja
nauka o danych
hybrydowe systemy rekomendacji
Microsoft Azure Machine Learning
język programowania Python
machine learning
artificial intelligence
data science
hybrid recommender
Python programming language
Opis:
Hybrydowe systemy rekomendacji łączą zalety metod stosowanych powszechnie w rekomendacji. Głównym celem tego artykułu jest przedstawienie zastosowania uczenia maszynowego do budowy hybrydowego silnika rekomendacji. Uczenie maszynowe jest poddziedziną sztucznej inteligencji, która wykazuję obiecujące rezultaty w klasyfikacji, predykcji, wykrywaniu anomalii i rekomendacji. W tym artykule zaproponowano koncepcję spersonalizowanego modelu systemu rekomendacji opartego na parametrach i planach treningowych sportowców. Badania przeprowadzono w środowisku chmurowym Microsoft Azure Machine Learning Studio na zbiorze danych wygenerowanym na podstawie danych referencyjnych.
Hybrid recommendation systems combine the advantages of commonly used methods in recommendations. This main objective of this article is to present application of machine learning to build a hybrid recommendation engine. Machine learning is subdomain of artificial intelligence that show promising results in classification, prediction, anomaly detection and recommendations. This paper proposed a personalized recommendation system model based on athletes parameters and training plans. The researches were carried out in the cloud environment Microsoft Azure Machine Learning Studio on football data set.
Źródło:
Zeszyty Naukowe Warszawskiej Wyższej Szkoły Informatyki; 2019, 13, 20; 29-40
1896-396X
2082-8349
Pojawia się w:
Zeszyty Naukowe Warszawskiej Wyższej Szkoły Informatyki
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Python Machine Learning. Dry Beans Classification Case
Autorzy:
Słowiński, Grzegorz
Powiązania:
https://bibliotekanauki.pl/articles/50091919.pdf
Data publikacji:
2024-09
Wydawca:
Warszawska Wyższa Szkoła Informatyki
Tematy:
machine learning
deep learning
data dimension reduction
activation function
Opis:
A dataset containing over 13k samples of dry beans geometric features was analyzed using machine learning (ML) and deep learning (DL) techniques with the goal to automatically classify the bean species. Performance in terms of accuracy, train and test time was analyzed. First the original dataset was reduced to eliminate redundant features (too strongly correlated and echoing others). Then the dataset was visualized and analyzed with a few shallow learning techniques and simple artificial neural network. Cross validation was used to check the learning process repeatability. Influence of data preparation (dimension reduction) on shallow learning techniques were observed. In case of Multilayer Perceptron 3 activation functions were tried: ReLu, ELU and sigmoid. Random Forest appeared to be the best model for dry beans classification task reaching average accuracy reaching 92.61% with reasonable train and test times.
Źródło:
Zeszyty Naukowe Warszawskiej Wyższej Szkoły Informatyki; 2024, 18, 30; 7-26
1896-396X
2082-8349
Pojawia się w:
Zeszyty Naukowe Warszawskiej Wyższej Szkoły Informatyki
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-5 z 5

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies