Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "wodor" wg kryterium: Temat


Wyświetlanie 1-7 z 7
Tytuł:
Hydrogen in energy balance – selected issues
Wodór w bilansie energetycznym – wybrane zagadnienia
Autorzy:
Mirowski, T.
Janusz, P.
Powiązania:
https://bibliotekanauki.pl/articles/394463.pdf
Data publikacji:
2018
Wydawca:
Polska Akademia Nauk. Instytut Gospodarki Surowcami Mineralnymi i Energią PAN
Tematy:
hydrogen
energy balance
power-to-gas
wodór
bilans energetyczny
Opis:
Energy from different sources is fundamental to the economy of each country. Bearing in mind the limited reserves of non-renewable energy sources and the fact that their production from new deposits is becoming less economically viable, attention is paid to alternative energy sources, particularly those that are readily available or require no substantial financial investment. One possible solution may be to generate hydrogen, which will then be used for heat (energy) production using other methods. At the same time, these processes will be characterized by low emission levels compared to conventional energy sources. In recent years, more and more emphasis has been placed on the use of clean energy from renewable sources. New, more technically and economically efficient technologies are being developed. The energy use worldwide comes mostly from fossil fuel processing. It can be observed that the share of RES in global production is growing every year. At the end of the 1990s, the share of renewable energy sources was at 6–7%. Global trends indicate the increasing demand for renewable energy due to its form. Global hydrogen resources are practically inexhaustible, but the problem is its availability in molecular form. The article analyzed the use of hydrogen as a fuel. The basic problem is the inexpensive and easy extraction of hydrogen from its compounds; attention has been paid to water, which can easily be electrolytically decomposed to produce oxygen and hydrogen. Hydrogen generated by electrolysis can be stored, but due to its physicochemical properties, it is a costly process; therefore, a decision was made that it is better to store it with natural gas or use it for further reaction. In addition, hydrogen can be used as a substrate for binding and converting the increasingly problematic carbon dioxide, thus reducing its content in the atmosphere.
Energia z różnych źródeł ma zasadnicze znaczenie dla gospodarki każdego kraju. Mając na uwadze ograniczone zasoby nieodnawialnych źródeł energii oraz fakt, że ich produkcja z nowych złóż staje się mniej opłacalna, zwraca się uwagę na alternatywne źródła energii, szczególnie te, które są łatwo dostępne lub nie wymagają znacznych inwestycji finansowych. Jednym możliwym rozwiązaniem może być wytwarzanie wodoru, który będzie następnie wykorzystywany do produkcji ciepła (energii) za pomocą innych metod. Jednocześnie procesy te będą charakteryzować się niskim poziomem emisji w porównaniu do konwencjonalnych źródeł energii. W ostatnich latach coraz większy nacisk kładzie się na wykorzystanie czystej energii ze źródeł odnawialnych. Trwają prace nad nowymi, wydajniejszymi technicznie i ekonomicznie technologiami. Ogólnoświatowe zużycie energii pochodzi głównie z przetwarzania paliw kopalnych. Można zaobserwować, że udział OZE w globalnej produkcji rośnie z każdym rokiem. Pod koniec lat dziewięćdziesiątych ubiegłego wieku udział odnawialnych źródeł energii kształtował się na poziomie 6–7%. Wskazują na to globalne trendy, zwiększając zapotrzebowanie na energię odnawialną ze względu na jej formę. Globalne zasoby wodoru są praktycznie niewyczerpane, ale problemem jest dostępność w postaci molekularnej. W artykule analizowano wykorzystanie wodoru jako paliwa. Podstawowym problemem jest tania i łatwa ekstrakcja wodoru z jego związków; zwrócono uwagę na wodę, którą można łatwo rozłożyć elektrolitycznie w celu wytworzenia tlenu i wodoru. Wodór generowany przez elektrolizę może być przechowywany, ale ze względu na jego właściwości fizykochemiczne jest to kosztowny proces; dlatego zdecydowano, że lepiej jest przechowywać go za pomocą gazu ziemnego lub użyć go do dalszej reakcji. Ponadto wodór może być stosowany jako substrat do wiązania i przekształcania coraz bardziej problematycznego dwutlenku węgla, zmniejszając w ten sposób jego zawartość w atmosferze.
Źródło:
Zeszyty Naukowe Instytutu Gospodarki Surowcami Mineralnymi i Energią PAN; 2018, 102; 51-64
2080-0819
Pojawia się w:
Zeszyty Naukowe Instytutu Gospodarki Surowcami Mineralnymi i Energią PAN
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Rozproszona generacja wodorowa odpowiedzią na potrzeby transformacj energetycznej
Distributed hydrogen generation as a response to energy transition needs
Autorzy:
Bandoła, Dominika
Bazan, Marta
Lelek, Łukasz
Żmuda, Robert
Powiązania:
https://bibliotekanauki.pl/articles/2204796.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Instytut Gospodarki Surowcami Mineralnymi i Energią PAN
Tematy:
wodór
transformacja energetyczna
trigeneracja
dekarbonizacja
hydrogen
energy transition
decarbonization
trigeneration
Opis:
Wodór będzie stanowił ważny element w procesie transformacji energetycznej, jako ogniwo łączące odnawialne źródła energii z wieloma gałęziami gospodarki – od paliw dla transportu, poprzez procesy przemysłowe, aż do generacji energii elektrycznej i ciepła. Instalacje pracujące na pokrycie lokalnego zapotrzebowania na paliwo, z wykorzystaniem pobliskich źródeł, zwiększą bezpieczeństwo energetyczne regionów i ułatwią dekarbonizację wielu sektorów, zgodnie z założeniami Pakietu Klimatycznego oraz aktualnym planem RePowerEU. Wodór stanowić może także element bilansujący dla stabilnej pracy systemu elektroenergetycznego. Droga do rozwoju gospodarki wodorowej wymaga natomiast wypracowania standardów, optymalizacji rozwiązań technicznych, budowania łańcucha dostaw oraz wprowadzenia stabilnego otoczenia prawnego. Niniejszy rozdział podsumowuje kluczowe cechy nośnika energii, jakim jest wodór, najważniejsze technologie jego produkcji i wykorzystania oraz ich potencjalny wpływ na rynek energii. Opisano również warianty zastosowania paliwa rozpatrywane przy budowaniu gospodarki wodorowej i jej rolę w procesie transformacji energetycznej, które stanowią o potencjale technologii i uzasadniają podejmowane działania. Polska obecnie produkuje około 1 mln ton wodoru rocznie, głównie poprzez reforming parowy gazu ziemnego. Posiadane doświadczenia w tym zakresie powalają nam na podejmowanie działań związanych z dekarbonizacją istniejących źródeł wytwórczych oraz rozwój nowych źródeł zeroemisyjnych. Obecny proces tworzenia się nowego rynku opartego na wykorzystaniu nisko- i bezemisyjnego wodoru sprzyja powstawaniu wielu ciekawych inicjatyw, w tym struktur nazwanych Dolinami Wodorowymi. W rozdziale opisano aktywne podmioty i wybrane projekty realizowane aktualnie w Polsce. Podjęto także temat założeń Polskiej Strategii Wodorowej – opisano główne cele, które ona wyznacza, a także zagadnienia związane z trwającymi zmianami legislacyjnymi. Podsumowanie zawiera wnioski wyciągnięte z realizacji pierwszych projektów wodorowych w Polsce przez firmę SBB ENERGY SA.
Hydrogen will be an important element in the energy transition, as a link between renewable energy sources and many sectors of the economy – from fuels for transportation to industrial processes to electricity generation and heat. Installations working to meet local fuel needs, using neighbouring sources, will increase regional energy security and facilitate the decarbonization of many sectors, in line with the Climate Package and the current RePowerEU plan. Hydrogen can also provide a balancing element for the stable operation of the electric power system. However, the road to the growth of the hydrogen economy requires the development of standards, the optimization of technical solutions, the building of a supply chain and the introduction of a stable legal environment. This chapter summarizes the key features of the hydrogen energy carrier, the most important technologies for its production and use, and their potential impact on the energy market. It also describes the fuel application variants considered in building a hydrogen economy and its role in the energy transition process, which represent the potential of the technology and justify the actions being taken. Poland currently produces about 1 million tons of hydrogen per year, mainly through steam reforming of natural gas. The experience we have in this area allows us to take steps to decarbonize existing generation sources and develop new zero-carbon production sources. The current process of creating a new market based on the use of low- and zero-emission hydrogen is fostering the formation of many interesting initiatives, including structures called Hydrogen Valleys. The chapter describes active players and selected projects currently underway in Poland. The assumptions of the Polish Hydrogen Strategy are also addressed – the main goals it sets are described, as well as issues related to ongoing legislative changes. The summary includes lessons learned from the implementation of the first hydrogen projects in Poland by SBB ENERGY SA.
Źródło:
Zeszyty Naukowe Instytutu Gospodarki Surowcami Mineralnymi i Energią PAN; 2023, 111; 117--129
2080-0819
Pojawia się w:
Zeszyty Naukowe Instytutu Gospodarki Surowcami Mineralnymi i Energią PAN
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Polska Strategia wodorowa. Rola dolin wodorowych
Polish Hydrogen Strategy. The role of hydrogen valleys
Autorzy:
Barszczowska, Beata
Powiązania:
https://bibliotekanauki.pl/articles/2204805.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Instytut Gospodarki Surowcami Mineralnymi i Energią PAN
Tematy:
wodór
strategia wodorowa
doliny wodorowe
hydrogen
hydrogen strategy
hydrogen valleys
Opis:
W lipcu 2020 r. Komisja Europejska ogłosiła Strategię w zakresie wodoru na rzecz Europy neutralnej dla klimatu. Wskazała wodór jako kluczowy priorytet służący osiągnięciu Europejskiego Zielonego Ładu. Gaz ten może być zarówno surowcem, paliwem, jak i nośnikiem i magazynem energii. Komisja wskazała, iż wodór może również zastępować paliwa kopalne w niektórych wysokoemisyjnych procesach przemysłowych. Tworzące się doliny wodoworowe będą bazować na lokalnym popycie i rozwijać się, dzięki miejscowej producji tego gazu, który będzie produkowany lokalnie ze źródeł odnawialnych i transportowany na niewielkie odległości. W grudniu 2021 r. ogłoszono Polską strategię wodorową do roku 2030 z perspektywą do roku 2040 r., określającej ramy wdrażania gospodarki wodorowej w Polsce. W rozdziale przedstawiono najważniejsze założenia polskiej i europejskiej strategii wodorowej oraz zaprezentowano podstawowe informacje na temat tworzących się w Polsce dolin wodorowych. Doliny te mają pełnić istotną rolę w rozwoju gospodarki wodorowej. Zgodnie z założeniami Strategii ma ich powstać co najmniej pięć. W tworzeniu tych dolin miała udział także Agencja Rozwoju Przemysłu SA.
In July 2020, the European Commission announced the Hydrogen Strategy for a climate-neutral Europe. It identified hydrogen as a key priority to achieve the European Green Deal. This gas can be uses as a raw material, a fuel as well as a carrier and storage of energy. The Commission has indicated that hydrogen can also replace fossil fuels in some carbon-intensive industrial processes. The emerging hydrogen valleys will be based on local demand and developed thanks to the local production of this gas, which will be produced locally from renewable sources and transported over short distances, will be expanded. In December 2021, the Polish hydrogen strategy until 2030 with an outlook until 2040 was announced, setting the framework for the implementation of the hydrogen economy in Poland. The chapter presents the most important assumptions of the both Polish and European hydrogen strategy and basic information on hydrogen valleys that are being created in Poland. These valleys should play an important role in the development of the hydrogen economy. According to the assumptions of the Strategy, at least five of them are to be created. The Industrial Development Agency JSC also participated in the creation of these valleys.
Źródło:
Zeszyty Naukowe Instytutu Gospodarki Surowcami Mineralnymi i Energią PAN; 2023, 111; 109--115
2080-0819
Pojawia się w:
Zeszyty Naukowe Instytutu Gospodarki Surowcami Mineralnymi i Energią PAN
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wyznaczanie wartości czasu wykorzystania mocy zainstalowanej elektrolizera zasilanego z farmy fotowoltaicznej
Determination of the value of the time of using the installed power of the electrolyser supplied from the photovoltaic farm
Autorzy:
Ceran, Bartosz
Wróblewski, Robert
Powiązania:
https://bibliotekanauki.pl/articles/2204800.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Instytut Gospodarki Surowcami Mineralnymi i Energią PAN
Tematy:
wodór
elektrolizer PEM
analiza energetyczna
bateria elektrochemiczna
hydrogen
PEM electrolyser
energy analysis
electrochemical battery
Opis:
W rozdziale przedstawiono przykłady inwestycji w technologie wodorowe w Polsce. Przedstawiono wyniki analizy energetycznej układu farma fotowoltaiczna–elektrolizer do produkcji czystego, zielonego wodoru. Zdefiniowano wzór na czas wykorzystania mocy zainstalowanej elektrolizera zasilanego z farmy PV oraz wyznaczono jego wartość. Przedstawiono profil produkcji energii elektrycznej przez farmę PV. Obliczenia wykonano na podstawie danych nasłonecznienia dla lokalizacji miasta Poznania. Przytoczono wzór na wartość mocy generowanej przez farmę PV oraz wzory pozwalające określić roczną wartość masy wyprodukowanego wodoru. Przebadano wpływ wartości stosunku mocy elektrolizera do mocy farmy fotowoltaicznej (PEL/PPV) na wartość czasu wykorzystania jego mocy zainstalowanej. Wyniki analizy przedstawiono w formie graficznej za pomocą charakterystyki PEL/PPV = f(TEL). Zaproponowano metodologię doboru mocy i pojemności baterii elektrochemicznej w celu zwiększenia produkcji wodoru.
The chapter presents examples of investments in hydrogen technologies in Poland. The results of the energy analysis of the photovoltaic farm-electrolyser system for the production of pure, green hydrogen are presented. The formula for the use of the installed power of the electrolyser supplied from a PV farm was defined and its value was determined. The profile of electricity production by a PV farm was presented. The calculations were made on the basis of insolation data for the city of Poznań. The formula for the value of the power generated by the PV farm and the formulas allowing to determine the annual value of the mass of produced hydrogen were presented. The influence of the ratio of the electrolyser power to the power of a photovoltaic farm (PEL/PPV) on the value of the utilization time of its installed power was investigated. The results of the analysis are presented graphically by means of the PEL/PPV = f(TEL) characteristic. A methodology for selecting the power and capacity of an electrochemical battery was proposed to increase hydrogen production.
Źródło:
Zeszyty Naukowe Instytutu Gospodarki Surowcami Mineralnymi i Energią PAN; 2023, 111; 131--142
2080-0819
Pojawia się w:
Zeszyty Naukowe Instytutu Gospodarki Surowcami Mineralnymi i Energią PAN
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analiza energetyczna pracy układu instalacja fotowoltaiczna–elektrolizer przeznaczonego do produkcji wodoru
Energy analysis of the system PV–electrolyser designed for the production of hydrogen
Autorzy:
Ceran, Bartosz
Powiązania:
https://bibliotekanauki.pl/articles/2142997.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Instytut Gospodarki Surowcami Mineralnymi i Energią PAN
Tematy:
wodór
elektrolizer PEM
analiza energetyczna
straty energii
hydrogen
PEM electrolyser
energy analysis
energy losses
Opis:
W publikacji przedstawiono wyniki analizy energetycznej układu farma fotowoltaiczna – elektrolizer do produkcji czystego, zielonego wodoru. Analizę przeprowadzono dla okresu 10-letniej eksploatacji systemu z uwzględnieniem wpływu spadku wydajności urządzeń na efektywność energetyczną procesu produkcji wodoru. Zdefiniowano równania bilansowe systemu. Na podstawie produkcji energii elektrycznej przez instalacje PV dobrano liczbę pracujących elektrolizerów. Przedstawiono wpływ starzenia się paneli PV na charakterystykę eksploatacyjną PPV = f(E). Opisano model matematyczny przeznaczono do wyznaczania spadku wydajności elektrolizera na podstawie wzrostu wartości napięcia średniego Uav. Wyznaczono zmiany wartości wskaźnika jednostkowego kosztu produkcji wodoru oraz zmiany wartości wskaźnika jednostkowego zapotrzebowania na energię do produkcji 1 kg wodoru. Uzyskane wyniki zaprezentowano w formie graficznej za pomocą wykresów słupkowych. W pracy zwrócono uwagę na fakt, że nieuwzględnianie spadku wydajności urządzeń prowadzi do uzyskania błędnych wyników dotyczących prognozowanej ilości produkowanego wodoru. Wykazano konieczność prowadzania analiz techniczno-ekonomicznych pracy rozpatrywanego systemu w perspektywie długoterminowej.
Źródło:
Zeszyty Naukowe Instytutu Gospodarki Surowcami Mineralnymi i Energią PAN; 2022, 110; 119--128
2080-0819
Pojawia się w:
Zeszyty Naukowe Instytutu Gospodarki Surowcami Mineralnymi i Energią PAN
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Amoniak surowcem energetycznym?
Amonia as an energy resource?
Autorzy:
Sikora, Andrzej P.
Sikora, Mateusz
Powiązania:
https://bibliotekanauki.pl/articles/2143007.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Instytut Gospodarki Surowcami Mineralnymi i Energią PAN
Tematy:
amoniak
wodór
gaz ziemny
skroplony gaz ziemny (LNG)
ammonia
hydrogen
natural gas
liquefied natural gas (LNG)
Opis:
W rozdziale opisano podjęte próby wykorzystania amoniaku jako surowca energetycznego. Podano genezę nazwy amoniak. Opisano jego strukturę i dotychczasowe sposoby wykorzystania, wskazując na znaczącą rolę wodoru – także w cząsteczkach wody, metanu czy innych węglowodorów. Autorzy nawiązują do zmienionej japońskiej polityki energetycznej oraz mapy drogowej ,w której wodór, ale przede wszystkim amoniak, mają podstawową do spełnienia rolę. Pokazują rolę wodoru i produktów wodoropochodnych w wytwarzaniu energii. Japońska Mapa drogowa określa drogę dojścia do zero emisyjności gospodarki w perspektywie 2050 r. Wskazano także na bolączki infrastruktury przesyłowej i magazynowania wodoru wobec znacznie łatwiejszej logistyce dla amoniaku. Zaznaczono możliwą do wypełnienia rolę grafenu jako materiału do magazynowania wodoru. Opisano szanse i wyzwania stojące przed rozwojem transgranicznego rynku „zielonego” wodoru w UE. Jednocześnie pokazano podobieństwo w celu osiągnięcia neutralności klimatycznej Europy do 2050, której główne cele to brak emisji netto gazów cieplarnianych do atmosfery oraz doprowadzenie do oddzielenia wzrostu ekonomicznego od zasobów. Rola wodoru w założeniach tej polityki klimatycznej wydaje się nie do przecenienia. Ma on przede wszystkim zastąpić paliwa kopalne w tych sektorach, których nie da się w pełni zelektryfikować oraz pozwolić na magazynowanie energii elektrycznej wytworzonej z OZE w okresie nadpodaży.
The chapter describes the attempts to use ammonia as an energy raw material. The origin of the name ammonia is given. Its structure and current methods of use have been described, indicating the significant role of hydrogen – also in water, methane and other hydrocarbons. The authors refer to the revised Japanese energy policy and the roadmap in which hydrogen, but above all ammonia, have a fundamental role to play. They show the role of hydrogen and hydrocarbon products in energy production. The Japanese roadmap outlines the path to a zero-carbon economy by 2050. It also points to the disadvantages of hydrogen transmission and storage infrastructure in the face of much easier logistics for ammonia. The possible role of graphene as a material for hydrogen storage is marked. The opportunities and challenges facing the development of the cross-border „green” hydrogen market in the EU are described. And the similarity is shown with the aim of achieving Europe’s climate neutrality by 2050, the main goals of which are no net emissions of greenhouse gases to the atmosphere and a decoupling of economic growth from resources. The role of hydrogen in the assumptions of this climate policy cannot be overestimated. It is primarily intended to replace fossil fuels in those sectors that cannot be fully electrified and allow the storage of electricity generated from RES in the period of oversupply.
Źródło:
Zeszyty Naukowe Instytutu Gospodarki Surowcami Mineralnymi i Energią PAN; 2022, 110; 75-85
2080-0819
Pojawia się w:
Zeszyty Naukowe Instytutu Gospodarki Surowcami Mineralnymi i Energią PAN
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Potencjał zastosowania wodoru w polskim systemie energetycznym
The potential of using hydrogen in the Polish energy system
Autorzy:
Chmielniak, Tadeusz
Skorek-Osikowska, Anna
Bartela, Łukasz
Powiązania:
https://bibliotekanauki.pl/articles/2143000.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Instytut Gospodarki Surowcami Mineralnymi i Energią PAN
Tematy:
zielony wodór
potencjał produkcji zielonego wodoru w Polsce
technologie wodorowe w energetyce
green hydrogen
potential of hydrogen production in Poland
hydrogen technologies in the energy sector
Opis:
Realizacja strategii dekarbonizacji polskiej gospodarki wymaga wprowadzenia do eksploatacji nowych technologii energetycznych, w tym technologii wodorowych. W rozdziale zawarto informacje o potencjalnych możliwościach wykorzystania wodoru w procesach generacji elektryczności i ciepła. Struktura pozyskiwania w Polsce zarówno energii elektrycznej, jak i pierwotnej, istotnie różni się od struktury charakterystycznej dla UE. Istnieje znaczny potencjał jej dywersyfikacji. We wszystkich działach energetyki zastosowanie wodoru może ułatwić uzyskanie celów klimatycznych i ekonomicznych (efektywnościowych). Ostateczne scenariusze technologiczne wytwarzania wodoru będą zależeć od stanu rozwoju OZE i ekonomiczności poszczególnych rozwiązań. Ważne jest pytanie, który scenariusz jest najprawdopodobniejszy w Polsce. Biorąc pod uwagę aktualny potencjał OZE oraz przewidywany ich rozwój do 2040 r., wydaje się, że elektrolityczna produkcja wodoru w Polsce z wykorzystaniem OZE nie będzie zbyt wysoka. Założenie 2 GW mocy elektrolizerów w 2030 r. w Polskiej strategii wodorowej jest bardzo (zbyt) optymistyczne (Niemcy 5 GW, Hiszpania 4 GW). Trudno natomiast przesądzić, jakie będzie upowszechnienie innych technologii wytwarzania, zwłaszcza trudno ocenić udział CCS. W najbardziej optymistycznym scenariuszu sformułowanym dla UE udział wodoru w 2050 r. w końcowym zużyciu energii wynosi 24% (2251 TWh) (Hydrogen… 2019). Przewidywana struktura jego zużycia to: 112 TWh (około 5%) – wytwarzanie elektryczności, bilansowanie systemu (power generation, buffering, sektor 1); 675 TWh (30%) – transport (sektor 2); 579 TWh (25,7%) – ogrzewanie i energia dla mieszkalnictwa (heating, power for buildings, sektor 3); 237 TWh (10,5%) – energia dla procesów przemysłowych (industry energy, sektor 4); 257 TWh (11,4%) – nowe zastosowania przemysłowe (new industry feedstock, sektor 5); 391 TWh (17,4%, sektor 6) – istniejące obszary zastosowań przemysłowych (existing industry feedstock). Ten procentowy udział w zakresie sektorów 1 i 3 przeniesiony na grunt Polski można uznać za rozsądny. Aczkolwiek bardzo szkodliwa z ekologicznego punktu widzenia struktura zużycia energii w gospodarstwach domowych w Polsce w chwili obecnej, podpowiada zwiększenie udziału wodoru w tym sektorze.
Źródło:
Zeszyty Naukowe Instytutu Gospodarki Surowcami Mineralnymi i Energią PAN; 2022, 110; 7-22
2080-0819
Pojawia się w:
Zeszyty Naukowe Instytutu Gospodarki Surowcami Mineralnymi i Energią PAN
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-7 z 7

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies