- Tytuł:
-
Analiza porównawcza prognozowania produkcji budowlanej z zastosowaniem metod regresji krokowej, sieci neuronowych i ARIMA
Comparative analysis of building production forecasting using regression, neural networks and ARIMA methods - Autorzy:
-
Rogalska, M.
Hejducki, Z. - Powiązania:
- https://bibliotekanauki.pl/articles/347484.pdf
- Data publikacji:
- 2010
- Wydawca:
- Akademia Wojsk Lądowych imienia generała Tadeusza Kościuszki
- Tematy:
-
prognozy
produkcja budowlano-montażowa
regresja krokowa
sieci neuronowe
ARIMA
forecast
building and assembling production
regression
neural networks - Opis:
-
W pracy analizowano możliwość prognozowania produkcji budowlano montażowej województwa dolnośląskiego metodami regresji, sieci neuronowych i ARIMA (Autoregressive Integrated Moving Average - autoregresyjny zintegrowany proces średniej ruchomej). Do prognozowania w metodzie regresji użyto danych pogodowych dziennych województwa dolnośląskiego. Potencjalne predyktory eliminowano, sprawdzając normalność ich rozkładów (testami Kołmogorowa- Smirnowa, Lilliefoesa i Chi kwadrat),warunek braku korelacji między zmiennymi (współczynnik korelacji) oraz warunek równości wariancji pomiędzy zmiennymi (testy Levene’a i Browna-Forsythe’a). Do obliczeń metodą sieci neuronowych użyto sieci MLP i RBF, wprowadzając wszystkie uzyskane dane pogodowe. W metodzie ARIMA prognozowanie odbywało się na podstawie wartości statystycznych z lat poprzednich. Przeprowadzono analizę wyników, obliczając błędy ME, MAE, MPE i MAPE. Zaproponowano kierunek dalszych badań.
The study analyzed the possibility of forecasting of Lower Silesia building production using regression, neural networks and ARIMA methods. For the forecasting regression method, daily weather data of Lower Silesia were used. Potential predictors were eliminated by checking the following: the normality of their distributions (Kolmogorov-Smirnov , Lilliefoes and Chi square tests), the condition of absence of correlation between variables (correlation coefficient) and the condition of equality of variance between the variables (Levene, Brown-Forsythe tests). To perform calculations with the neural networks method, MLP and RBF networks were used by entering all the weather data obtained. In the case of the ARIMA method, forecasting was carried out on the basis of statistical values from previous years. An analysis of errors was performed by calculating ME, MAE, MPE and MAPE errors. The direction of further research was proposed. - Źródło:
-
Zeszyty Naukowe / Wyższa Szkoła Oficerska Wojsk Lądowych im. gen. T. Kościuszki; 2010, 3; 282-295
1731-8157 - Pojawia się w:
- Zeszyty Naukowe / Wyższa Szkoła Oficerska Wojsk Lądowych im. gen. T. Kościuszki
- Dostawca treści:
- Biblioteka Nauki