Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "graceful labeling" wg kryterium: Temat


Wyświetlanie 1-8 z 8
Tytuł:
Pentagonal Graceful Labeling of Some Graphs
Autorzy:
Mahendran, S.
Murugan, K.
Powiązania:
https://bibliotekanauki.pl/articles/1193373.pdf
Data publikacji:
2021
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Pentagonal graceful number
pentagonal graceful graphs
pentagonal graceful labeling
Opis:
Numbers of the form (n(3n-1))/2 for all n ≥ 1 are called pentagonal numbers. Let G be a graph with p vertices and q edges. Let f : V(G)→{0,1,2,…,P_q} where P_q is the q^th pentagonal number be an injective function. Define the function f *: E(G) → {1,5,…,P_q} such that f *(uv)=│f(u)-f(v)│for all edges uv∈E(G). If f *( E(G)) is a sequence of distinct consecutive pentagonal numbers {P_1,P_2,…,P_q}, then the function f is said to be pentagonal graceful labeling and the graph which admits such a labeling is called a pentagonal graceful graph. In this paper, pentagonal graceful labeling of some graphs is studied.
Źródło:
World Scientific News; 2021, 155; 98-112
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Some Results on Octagonal Graceful Graphs
Autorzy:
Kovusalya, K.
Namasivayam, P.
Powiązania:
https://bibliotekanauki.pl/articles/1193388.pdf
Data publikacji:
2021
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Octagonal graceful number
octagonal graceful graphs
octagonal graceful labeling
Opis:
Numbers of the form On = n (3n-2) for all n≥1 are called octagonal numbers. Let G be a graph with p vertices and q edges. Let f: V (G) → {0, 1, 2… Om} where Om is the mth octagonal number be an injective function. Define the function f*:E(G) → {1,8,21,..,Om} such that f*(uv) = |f(u)-f(v)| for all edges uvϵE(G). If f*(E (G)) is a sequence of distinct consecutive octagonal numbers {O1, O2 , …, Oq }, then the function f is said to be octagonal graceful labeling and the graph which admits such a labeling is called a octagonal graceful graph. In this paper, octagonal graceful labeling of some graphs is studied.
Źródło:
World Scientific News; 2021, 156; 1-12
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Octagonal Graceful Labeling of Some Special Graphs
Autorzy:
Mahendran, S.
Powiązania:
https://bibliotekanauki.pl/articles/1193401.pdf
Data publikacji:
2021
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Octagonal graceful number
octagonal graceful graphs
octagonal graceful labeling
Opis:
Numbers of the form 3n2-2n for all n ≥ 1 are called octagonal numbers. Let G be a graph with p vertices and q edges. Let f :V(G)→{0,1,2,…,M_q} where M_q is the q^th octagonal number be an injective function. Define the function f *: E(G) → {1,8,…,M_q} such that f *(uv) = │f(u)-f(v)│for all edges uv ∈E(G). If f *(E(G)) is a sequence of distinct consecutive octagonal numbers {M_1,M_2,…,M_q}, then the function f is said to be octagonal graceful labeling and the graph which admits such a labeling is called a octagonal graceful graph. In this paper, octagonal graceful labeling of some graphs is studied.
Źródło:
World Scientific News; 2021, 156; 87-101
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Some Special Graceful Labeling Results of Pentagonal Pyramidal Graceful Graphs
Autorzy:
Mahendran, S.
Powiązania:
https://bibliotekanauki.pl/articles/1193441.pdf
Data publikacji:
2021
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Pentagonal pyramidal graceful number
pentagonal pyramidal graceful graphs
pentagonal pyramidal graceful labeling
Opis:
Numbers of the form (n^(2 ) (n+1))/2 for all n≥1 are called pentagonal pyramidal numbers. Let G be a graph with p vertices and q edges. Let Ψ : V(G) →{0, 1, 2… M_r} where M_r is the r^th pentagonal pyramidal number be an injective function. Define the function Ψ*:E(G) →{1,6,18,.., M_r} such that Ψ *(uv) = |Ψ (u)- Ψ (v)| for all edges uvϵE(G). If Ψ*(E (G)) is a sequence of distinct consecutive pentagonal pyramidal numbers {M_1,M_2, …, M_r}, then the function Ψ is said to be pentagonal pyramidal graceful labeling and the graph which admits such a labeling is called a pentagonal pyramidal graceful graph. In this paper, some special graceful labeling results of pentagonal pyramidal graceful graphs is studied.
Źródło:
World Scientific News; 2021, 157; 67-79
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Some Special Results for Square Pyramidal Graceful Graphs
Autorzy:
Mahendran, S.
Powiązania:
https://bibliotekanauki.pl/articles/1193411.pdf
Data publikacji:
2021
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Square pyramidal graceful number
square pyramidal graceful graphs
square pyramidal graceful labeling
Opis:
Numbers of the form (n(n+1)(2n+1))/6 for all n≥1 are called square pyramidal numbers. Let G be a graph with p vertices and q edges. Let τ : V(G) →{0, 1, 2… M_k} where M_k is the k^th square pyramidal number be an injective function. Define the function τ*:E(G)→{1,5,14,.., M_k} such that τ *(uv) = |τ (u)- τ (v)| for all edges uvϵE(G). If τ *(E(G)) is a sequence of distinct consecutive square pyramidal numbers {M_1,M_2, …, M_k}, then the function τ is said to be square pyramidal graceful labeling and the graph which admits such a labeling is called a square pyramidal graceful graph. In this paper, some special results for square pyramidal graceful graphs is studied.
Źródło:
World Scientific News; 2021, 156; 147-160
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Some results on centered triangular graceful graphs
Autorzy:
Baskar, M.
Namasivayam, P.
Syed Ali Nisaya, M. P.
Mahendran, S.
Powiązania:
https://bibliotekanauki.pl/articles/1193414.pdf
Data publikacji:
2021
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Centered triangular numbers
centered triangular graceful graphs
centered triangular graceful labeling
Opis:
Let G be a graph with p vertices and q edges. The nth centered triangular number is denoted by C_n, where C_n = 1/2 (3n2 - 3n + 2). A centered triangular graceful labeling of a graph G is a one-to-one function f : V (G) → {0,1,…C_q} that induces a bijection f *: E(G) →{C_1 〖,C〗_2,…C_q} of the edges of G defined by f * (e) = │f(u) - f(v)│, for all e = uv ∊ E(G). The graph which admits such labeling is called a centered triangular graceful graph.
Źródło:
World Scientific News; 2021, 156; 176-191
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Second order triangular graceful graphs
Autorzy:
Sakthi Sankari, R.
Syed Ali Nisaya, M. P.
Powiązania:
https://bibliotekanauki.pl/articles/1193377.pdf
Data publikacji:
2021
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Second order triangular graceful graph
Second order triangular graceful labeling
Second order triangular number
Opis:
Let G=(V,E) be a graph with p vertices and q edges. A second order triangular graceful labeling of a graph G is an one to one function φ:V(G)→{0,1,2,…,B_q} where B_q is the qth second order triangular number, ie., B_q=1/6 q(q+1)(2q+1), that induces a bijection φ^*:E(G)→{B_1,B_2,…,B_q} of the edges of G defined by φ^* (uv) =|φ(u)-φ(v)| ∀ e=uv ∈E(G). A graph which admits such labeling is called a second order triangular graceful graph. In this paper, we introduce second order triangular graceful labeling and we prove that star, subdivision of star, nK_1,3, nK_2, bistar, path, comb, coconut tree, shrub and Y-tree are second order triangular graceful graphs.
Źródło:
World Scientific News; 2021, 155; 140-154
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Higher order triangular graceful labeling of some graphs
Autorzy:
Sakthi Sankari, R.
Syed Ali Nisaya, M. P.
Powiązania:
https://bibliotekanauki.pl/articles/1193398.pdf
Data publikacji:
2021
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
fifth order
fifth order triangular graceful graph
fifth order triangular graceful labeling
fifth order triangular numbers
fourth order
third order
Opis:
A (p, q) graph G is said to admit higher order triangular graceful labeling if its vertices can be labeled by the integers from 0 to qth higher order triangular numbers such that the induced edge labels obtained by the absolute difference of the labels of end vertices are the first q higher order triangular numbers. A graph G which admits higher order triangular graceful labeling is called a higher order triangular graceful graph. In this paper, third order, fourth order, fifth order triangular graceful labeling are introduced and third order, fourth order, fifth order triangular graceful labeling of star graph, subdivision of star, nK_2, path, comb, bistar, coconut tree, nK_1,3 are studied.
Źródło:
World Scientific News; 2021, 156; 40-61
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-8 z 8

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies